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ASCENT is an open source platform for simulating peripheral nerve stimulation. To download the software, visit the
ASCENT GitHub repository.

https://youtu.be/rG-KU7wWcXY
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CHAPTER

ONE

GETTING STARTED

Our video tutorial covers all the content in this page, plus explanations of how ASCENT works! See it below:

1.1 Installation

1.1.1 Installing commercial software

In ASCENT, all programs/commands are run from a command line environment (Bash terminal for macOS/Linux,
Powershell for Windows). It is highly recommended that you install the package management system Miniconda or
Anaconda (if using macOS, choose .pkg for ease of use). However, advanced users who wish to use another Python
distribution may.

First, these software packages must be manually installed:

• Miniconda/Anaconda We recommend that you install Miniconda (Miniconda is a stripped down version of Ana-
conda; Anaconda is optional for intermediate users). If you already have an existing installation, there is no need
to reinstall.

– Recommended: Select add to path

– Recommended: Select “Install for individual user”

• Java SE Development Kit 8 (1.8) (need to register for a free account)

– If your COMSOL version is 6.0 or newer, you may instead install Java 11.

• COMSOL Multiphysics 5.4 or newer (requires purchase of license; only base package needed, which includes
the COMSOL Java API)

– Once COMSOL is installed, alter ‘File System Access’ permissions via File → Preferences → Security →
Methods and Java Libraries → File System Access → All Files.

• NEURON 7.6.7 or newer (newer versions have been released, but compatibility has yet to be confirmed; choose
appropriate installer depending on operating system; install auxiliary software as prompted by NEURON in-
staller)

– Depending on your operating system, some additional dependencies may be required. Make sure to follow
the installation instructions carefully.

– NEURON must be in your PATH in order to run simulations. Either choose the add to path option during
installation, or on Linux, you can add to your bash profile: export PATH=<path/to/neuron/>:$PATH.
The NEURON path should end with bin.

Users may also download a text editor or integrated development environment (IDE) of their choosing to view/edit code
(e.g., Atom, Visual Studio Code, IntelliJ IDEA). For Java code, full autocomplete functionality requires adding both
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the path to the COMSOL installation ending in plugins as well as the path <ASCENT_PATH>/bin/json-20190722.
jar to the list of available libraries (usually from within the IDE’s project settings). To run code in your IDE, newer
version of COMSOL may also require you to check the box File>Preferences>Security>Methods and Java
Libraries>Allow access to network sockets.

1.1.2 Installing ASCENT

1. First, download or clone the SPARC ASCENT pipeline from GitHub to a desired location that will be referenced
in step 3. Downloading is a much simpler process than cloning via Git, but does not easily allow for you to get
the most recent updates/bug fixes, nor does it allow you to suggest new features/changes. If you are interested in
either of these features, you should clone via Git rather than downloading.

• Downloading: Click the download button on GitHub and choose the location to which you would like to
save. Note that you will need to extract the files, as they will be downloaded in a compressed format. When
presented with a choice of compression format, “.zip” is a safe choice that most computers will be able to
extract.

• Cloning via Git:

1. You must first have an account with GitHub, and if you have been granted special permissions to the
code repository, you must use the email address to which those permissions were granted.

2. If you have not already done so, add an SSH key to your account (see instructions for GitHub). This
is a required standard authentication method.

3. In a Miniconda (or Git, for advanced users) command line environment, navigate to the location to
where you would like to clone the code repository (see instructions for navigating the file system from
the command line for Mac or Linux and Windows).

4. Clone the repository (see instructions for GitHub).

5. For more information on using Git, check out the official documentation.

2. Next, install ASCENT dependencies:

• Windows: Open the Anaconda Powershell Prompt from the Windows Start Menu as Administrator, and
use cd to navigate to the root directory of the pipeline. Then, run python run install.

Caution: If reinstalling ASCENT after having changed your Anaconda/Miniconda installation, it
may be necessary to delete the #region conda initialize block from C:\Users\<username>\
Documents\WindowsPowerShell\profile.ps1 in order to use Anaconda Powershell Prompt.

• MacOS/Linux: Open Anaconda Prompt and use cd to navigate to the root directory of the pipeline. Then,
run python run install.

• For advanced users using their own (non-conda) Python distribution:

– From the ascent root directory execute python run install --no-conda

– From the ascent root directory execute pip install -r requirements.txt

– This method is highly discouraged as newer versions of packages/Python could potentially break AS-
CENT or introduce unexpected bugs

After confirming that you are in the correct directory, the script will install the required Python packages.

1. Then, configure the environment variables. This step may be completed several ways, described below.

• Recommended Setup: Open Anaconda prompt, navigate to the ASCENT root directory, and execute
python run env_setup. You will be prompted for the following paths:

4 Chapter 1. Getting Started
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– ASCENT_COMSOL_PATH: Path to the COMSOL installation, ending in the directory name “Mul-
tiphysics”, as seen in the template and JSON Overview.

– ASCENT_JDK_PATH: Path to the JDK 1.8 installation, ending in bin, as seen in the template and
JSON Overview. Hint: This is the correct path if the directory contains many executables (for Win-
dows: java.exe, etc.; MacOS/Linux: java, etc.).

– ASCENT_PROJECT_PATH: Path to the root directory of the pipeline, as chosen for step 1.

– ASCENT_NSIM_EXPORT_PATH: Path to the export location for NEURON “simulation” directories.
This path only depends on the user’s desired file system organization.

• Manual Setup: Copy the file config/templates/env.json into config/system/env.json (new
file). This file holds important paths for software used by the pipeline (see env.json in Enums and JSON
Overview). Then, edit each of the four values as specified below. Use \\ in Windows and / in macOS/Linux
operating systems. Note that the file separators are operating system dependent, so even if you installed in
step 2 with Unix-like command environment on a Windows machine (e.g., using Git Bash, Cygwin, or a
VM with Ubuntu), you will still need to choose the proper file separator for Windows, i.e., \\). See example
env.json files for both macOS and Windows (Environment Parameters).

• Automatic setup: Upon the initiation of your first run, you will be prompted to enter the above four paths if
you did not choose to complete the manual setup. Enter them as prompted, following the guidelines detailed
above and exemplified in JSON Overview. Note that you may at any time update paths with python run
env_setup to rewrite this file if the information should change.

1.2 Metadata required to model an in vivo experiment using the AS-
CENT pipeline

Note: All metadata required for the tutorial run are provided with ASCENT.

1. Detailed specifications / dimensions of the stimulating cuff electrode.

2. Transverse cross-section of the nerve where the cuff is placed, stained to visualize the different tissue types (e.g.,
using Masson’s trichrome), with a scale bar (Fig 2 and Morphology Inputs)) or known scale (micrometers/pixel).
Different possible sources for defining the nerve sample morphology include:

a. For best specificity, the nerve would be sampled from the specific animal used in the experiment being modeled.
In this case, two colors of tissue dye may be used on the ventral and medial aspects of the nerve to maintain
orientation information.

b. Otherwise, a sample from another animal of the same species could be used at the correct nerve level.

c. If multiple samples from other animals are available, they could be used to generate a representa-
tive nerve model, knowing the range of morphological metrics across individuals using the scripts/
mock_morphology_generator.py script (Mock Morphology).

d. Lastly, published data could be used.

3. Orientation and rotation of the cuff on the nerve (e.g., cuff closure on the ventral side of the nerve).

4. Fiber diameters

a. Distributions of fiber diameters may be obtained from literature; otherwise, detailed electromicroscopic studies
are required.

b. The fiber diameters found in the target nerve that will be simulated in NEURON. All diameters or a subset of
diameters may be of interest.

1.2. Metadata required to model an in vivo experiment using the ASCENT pipeline 5
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c. Each fiber diameter of interest can be simulated for each fiber location of interest, or specific fiber diameters
can be simulated in specific locations.

5. Approximate tissue or fluids surrounding the nerve and cuff (e.g., muscle, fat, or saline).

6. Stimulation waveforms, pulse widths, and other parameters of the electrical signal.

7. If comparing to neural recordings: distance between the stimulation and recording cuffs.

8. If comparing to functional recordings (e.g., EMG): distance from the stimulation cuff to the location where the
nerve inserts into the muscle.

1.3 Setting up a run of ASCENT

How to run the ASCENT tutorial, after completing the initial setup.

Overview

Follow the instructions below and verify the threshold value to familiarize yourself with the ASCENT code and docu-
mentation.

We provide segmented histology of a rat cervical vagus nerve. Use the provided histology and configurations files to
simulate activation thresholds in response to a charge balanced, biphasic pulse (PW1 = 100 s, interphase gap of 100 s,
PW2 = 400 s) using Purdue’s bipolar cuff design.

• MRG 8.7 m diameter fibers

• Fibers placed in nerve cross-section using a 6 spoke wheel with 2 fibers per spoke

• Custom material for surrounding medium with isotropic conductivity 1/20 [S/m]

After your thresholds have been computed, build a heatmap for the thresholds at each fiber location.

Through this exercise, you will:

• Set up nerve morphology masks

• Define model with a custom material

• Build and solve a finite element model

• Define placement of fibers in the nerve cross-section

• Simulate activation thresholds for a specific fiber model using a custom waveform

• Generate a heatmap of fiber activation thresholds

Step-by-step instructions

Note: For this tutorial, use the files provided in the examples/tutorial/ directory. The below example directory
structure may be helpful.

Example directory structure

6 Chapter 1. Getting Started
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1. Input Masks: Create the directory input/tutorial/. Place the masks (.tif images) from examples/
tutorial/ here

Important: In steps 2-5, you can choose any number for sample_index, model_index, sim_index, and
run_index. However, the instructions here assume you chose 0 for all of these indices.

2. Sample: Create the directory samples/<sample_index>/. Copy sample.json from examples/tutorial/
to the folder you just created (e.g. samples/0/).

3. Model: Create the directory samples/<sample_index>/models/<model_index>/. Copy model.json
from examples/tutorial/ to the folder you just created (e.g. samples/0/models/0/).

4. Sim: Copy sim.json from examples/tutorial/ to config/user/sims/ and rename the file to
<sim_index>.json.

5. Run: Copy run.json from config/templates/ to config/user/runs/ and rename the file to
<run_index>.json. Open the file and edit your sample, model, and sim indices to match the ones you chose
above.

6. Run the pipeline with the commandpython run pipeline <run_index> (e.g. python run
pipeline 0). The pipeline will generate ready-to-run NEURON simulations and export them to the
"ASCENT_NSIM_EXPORT_PATH" defined during installation.

7. Run the NEURON simulations by navigating to the your "ASCENT_NSIM_EXPORT_PATH" and running the com-
mand python submit.py <run_index>. This may take some time.

8. After the NEURON simulations have completed, move the outputs back to the ASCENT directory structure by
running the command python run import_n_sims <run_index>.

Check

1.3. Setting up a run of ASCENT 7
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Threshold for inner0_fiber0 (samples/<sample_index>/models/<model_index>/sims/<sim_index>/
n_sims/data/outputs/thresh_inner0_fiber0.dat) should be -0.027402 mA

9. To generate a heatmap of activation thresholds, open the script examples/analysis/threshold_heatmap.
py and edit the sample, model, and sim indices to match the ones you chose above. Run the script
from the repository root with the command python examples/analysis/threshold_heatmap.py, and
a heatmap plot will be generated in output/analysis/. Your heatmap should look like the one below.

How to run the ASCENT pipeline, after completing the initial setup.

To set up a run of the pipeline, you must provide binary mask inputs for the nerve and save Sample (i.e., sample.json),
Model(s) (i.e., model.json), and Sim(s) (i.e., sim.json) JSON configurations in directories, relative to the project
path defined in config/system/env.json. The directory names must use indices that are consistent with the indices
of Sample, Model(s), and Sim(s) defined in Run.

1. Masks: Populate input/<NAME>/ (e.g., “Rat1-1”, which must match “sample” parameter in Sample) with bi-
nary masks of neural tissue boundaries using either:

a. Segmented histology and Fig 2), or

b. The mock_morphology_generator.py script (Mock Morphology).

1. Copy mock_sample.json from config/templates/ to config/user/mock_samples/ as
<mock_sample_index>.json and update file contents, including the “NAME” parameter used to
construct the destination path for the output binary masks, which serve as inputs to the pipeline.

2. Call "python run mock_morphology_generator <mock_sample_index>".

3. The program saves a copy of your mock_sample.json and binary masks in input/<NAME>/.

2. For one Sample: Copy sample.json from config/templates/ to samples/<sample_index>/ as sample.
json and edit its contents to define the processing of binary masks to generate the two-dimensional

8 Chapter 1. Getting Started
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Fig. 1: Overview of the requirements to run the ASCENT pipeline.

cross-section geometry of the nerve in the FEM. In particular, change “sample” to match <NAME>, the
"scale_bar_length" parameter for s.tif (i.e., length in microns of your scale bar, which is oriented hor-
izontally), and "mask_input" in Sample accordingly (Sample Parameters). You have now created the directory
for your first sample: sample #<sample_index>. Note: in lieu of a scale bar image, the user may optionally
specify the microns/pixel ratio for the sample mask(s).

3. For each Model: Copy model.json from config/templates/ to samples/<sample_index>/models/
<model_index>/ as model.json and edits its contents to define the three-dimensional FEM.

a. Assign the cuff geometry to be used by placing a file name from config/system/cuffs in
"cuff":"preset".

b. Optionally, define a new cuff geometry specific to your needs:

1. Preset: User defines a new “preset” cuff JSON file, which contains instructions for creating their cuff
electrode, and saves it as config/system/cuffs/<preset_str>.json.

2. The <preset_str>.json file name must be assigned to the “preset” parameter in Model (Model Param-
eters).

4. For each Sim: Copy sim.json from config/templates/ to config/user/sims/ as <sim_index>.json
and edit its contents to inform the NEURON simulations (Sim Parameters).

5. Run: Copy run.json from config/templates/ to config/user/runs/ as <run_index>.json and edit
the indices for the created Sample, Model(s), and Sim(s) configurations (Run Parameters).

6. The pipeline is run from the project path (i.e., the path to the root of the ASCENT pipeline, which
is defined in config/system/env.json) with the command "python run pipeline <run indices>",
where <run indices> is a list of space-separated Run indices (if multiple Sample indices, one Run
for each). The pipeline outputs ready-to-submit NEURON simulations and associated Run file(s) to the
"ASCENT_NSIM_EXPORT_PATH" directory as defined in config/system/env.json (Environment Parame-
ters). NEURON simulations are run locally or submitted to a computer cluster with the command "python

1.3. Setting up a run of ASCENT 9
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submit.py <run indices>" from the export directory.

See also:

For more information on ASCENT read about ASCENT usage, ASCENT inputs and controls, and ASCENT parameter
options.

10 Chapter 1. Getting Started



CHAPTER

TWO

RUNNING ASCENT

2.1 How to use ASCENT

2.1.1 Running the ASCENT Pipeline

See Running the Pipeline for instructions on how to run ASCENT. The first three stages of ASCENT are invoked
by the command python run pipeline. This performs the necessary operations to prepare simulations of nerve
stimulation. The final stage of ASCENT is invoked by the command python submit.py, which runs the simulations.
After the simulations are run, the Query Class can be used to obtain the resultant data, and the Plotter Module can be
used to visualize the results.

Fig. 1: The stages of the ASCENT pipeline.

11
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2.1.2 Submitting NEURON jobs

We provide scripts for the user to submit NEURON jobs in src/neuron/. The submit.py script takes the input
of the Run configuration and submits a NEURON call for each independent fiber within an n_sim/. These scripts
are called using similar syntax as pipeline.py: "./submit.<ext> <run indices>," where <run indices> is
a space-separated list of integers. Note that these submission scripts expect to be called from a directory with the
structure generated by Simulation.export_nsims() at the location defined by "ASCENT_NSIM_EXPORT_PATH" in
env.json.

Cluster submissions

When using a high-performance computing cluster running SLURM:

1. Set your default parameters, particularly your partition (can be found in "config/system/slurm_params.
json"). The partition you set here (default is “common” ) will apply to all submit.py runs.

2. submit.py will run in cluster mode if it detects that "sbatch" is an available command. To override this
behavior manually, use Command-Line Arguments.

3. Many parameters which submit.py sources from JSON configuration files can be overridden with command
line arguments. For more information, see Command-Line Arguments.

2.1.3 Other Scripts

We provide scripts to help users efficiently manage data created by ASCENT. Run all of these scripts from the directory
to which you installed ASCENT (i.e., "ASCENT_PROJECT_PATH" as defined in config/system/env.json). For
specific controls associated with each script, see Command Line Arguments.

scripts/import_n_sims.py

To import NEURON simulation outputs (e.g., thresholds, recordings of Vm) from your ASCENT_NSIM_EXPORT_PATH
(i.e., <"ASCENT_NSIM_EXPORT_PATH" as defined in env.json>/n_sims/<concatenated indices as
sample_model_sim_nsim>/data/outputs/) into the native file structure (see ASCENT Data Hierarchy, samples/
<sample_index>/models/<model_index>/sims/<sim_index>/n_sims/<n_sim_index>/data/outputs/)
run this script from your "ASCENT_PROJECT_PATH".

python run import_n_sims <list of run indices>

The script will load each listed Run configuration file from config/user/runs/<run_index>.json to determine
for which Sample, Model(s), and Sim(s) to import the NEURON simulation data. This script will check for any missing
thresholds and skip that import if any are found. Override this by passing the flag --force. To delete n_sim folders
from your output directory after importing, pass the flag --delete-nsims. For more information, see Command-Line
Arguments.

12 Chapter 2. Running ASCENT
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scripts/clean_samples.py

If you would like to remove all contents for a single sample (i.e., samples/<sample_index>/) EXCEPT a list of files
(e.g., sample.json, model.json) or EXCEPT a certain file format (e.g., all files ending .mph), use this script. Run
this script from your "ASCENT_PROJECT_PATH". Files to keep are specified within the python script.

python run clean_samples <list of sample indices>

scripts/tidy_samples.py

If you would like to remove ONLY CERTAIN FILES for a single sample (i.e., samples/<sample_index>/), use this
script. This script is useful for removing logs, runtimes, special, and _.bat or _.sh scripts. Run this script from your
"ASCENT_PROJECT_PATH". Files to remove are specified within the python script.

python run tidy_samples <list of sample indices>

2.1.4 Data analysis tools

Python Query class

The general usage of Query is as follows:

1. In the context of a Python script, the user specifies the search criteria (think of these as “keywords” that filter
your data) in the form of a JSON configuration file (see query_criteria.json in Query Parameters).

2. These search criteria are used to construct a Query object, and the search for matching Sample, Model, and Sim
configurations is performed using the method run().

3. The search results are in the form of a hierarchy of Sample, Model, and Sim indices, which can be accessed
using the summary() method.

Using this “summary” of results, the user is then able to use various convenience methods provided by the Query
class to build paths to arbitrary points in the data file structure as well as load saved Python objects (e.g., Sample and
Simulation class instances).

The Query class’s initializer takes one argument: a dictionary in the appropriate structure for query criteria (Query
Parameters) or a string value containing the path (relative to the pipeline repository root) to the desired JSON configu-
ration with the criteria. Put concisely, a user may filter results either manually by using known indices or automatically
by using parameters as they would be found in the main configuration files. It is extremely important to note that
the Query class must be initialized with the working directory set to the root of the pipeline repository (i.e., sys.
path.append(ASCENT_PROJECT_PATH) in your script). Failure to set the working directory correctly will break the
initialization step of the Query class.

After initialization, the search can be performed by calling Query’s run() method. This method recursively dives
into the data file structure of the pipeline searching for configurations (i.e., Sample, Model, and/or Sim) that satisfy
query_criteria.json. Once run() has been called, the results can be fetched using the summary() accessor
method. In addition, the user may pass in a file path to excel_output() to generate an Excel sheet summarizing
the Query results. Finally, use the threshold_data() method to return a DataFrame of thresholds with identifying
information.

Query also has methods for accessing configurations and Python objects within the samples/ directory based on a list
of Sample, Model, or Sim indices. The build_path() method returns the path of the configuration or object for the
provided indices. Similarly, the get_config() and get_object() methods return the configuration dictionary or
saved Python object (using the Pickle package), respectively, for a list of configuration indices. These tools allow for
convenient looping through the data associated with search criteria.

Example uses of these Query convenience methods are included in examples/analysis/.

2.1. How to use ASCENT 13
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• plot_sample.py

• plot_fiberset.py

• plot_waveform.py

Specialized ASCENT plots

See Plotter Module for more info; example uses of this module are provided in examples/analysis.

Video generation for NEURON state variables

In examples/analysis/ we provide a script, plot_video.py, that creates an animation of saved state variables as
a function of space and time (e.g., transmembrane potentials, MRG gating parameters). The user can plot n_sim data
saved in a data/output/ folder by referencing indices for Sample, Model, Sim, inner, fiber, and n_sim. The user
may save the animation as either a *.mp4 or *.gif file to the data/output/ folder.

The plot_video.py script is useful for determining necessary simulation durations (e.g., the time required for an
action potential to propagate the length of the fiber) to avoid running unnecessarily long simulations. Furthermore,
the script is useful for observing onset response to kilohertz frequency block, which is important for determining the
appropriate duration of time to allow for the fiber onset response to complete.

Users need to determine an appropriate number of points along the fiber to record state variables. Users have the
option to either record state variables at all Nodes of Ranvier (myelinated fibers) or sections (unmyelinated fibers), or
at discrete locations along the length of the fiber (Sim Parameters).

2.2 Command-Line Arguments

Note: In cases where a behavior can be controlled by both a command line argument, and a configuration file (.json
file), the command line argument will ALWAYS take precedence.

2.2.1 run

ASCENT: Automated Simulations to Characterize Electrical Nerve Thresholds

usage: run [-h] [-v] [--version] [-l {runs,samples,sims}]
{pipeline,tidy_samples,import_n_sims,clean_samples,mock_morphology_generator,

→˓install,env_setup,build_dataset}
...
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ASCENT, Release v1.3.1

Positional Arguments

script Possible choices: pipeline, tidy_samples, import_n_sims, clean_samples,
mock_morphology_generator, install, env_setup, build_dataset

which script to run

Named Arguments

-v, --verbose verbose printing

Default: False

--version show program’s version number and exit

-l, --list Possible choices: runs, samples, sims

List all available indices for the specified option

Sub-commands

pipeline

main ASCENT pipeline

run pipeline [-h]
[-b {pre_geom_run,post_geom_run,pre_java,post_mesh_distal,pre_mesh_distal,

→˓post_material_assign,pre_loop_currents,pre_mesh_proximal,post_mesh_proximal,pre_solve}]
[-w WAIT_FOR_LICENSE] [-P {cuff_only,nerve_only}]
[-E {overwrite,error,selective}] [-e] [-r] [-S] [-c | -C]
run_indices [run_indices ...]

Positional Arguments

run_indices Space separated indices to run the pipeline over

Named Arguments

-b, --break-point Possible choices: pre_geom_run, post_geom_run, pre_java, post_mesh_distal,
pre_mesh_distal, post_material_assign, pre_loop_currents, pre_mesh_proximal,
post_mesh_proximal, pre_solve

Point in pipeline to exit and continue to next run

-w, --wait-for-license Wait the specified number of hours for a comsol license to become available.

-P, --partial-fem Possible choices: cuff_only, nerve_only

Only generate the specified geometry.

-E, --export-behavior Possible choices: overwrite, error, selective

Behavior if n_sim export encounters extant data. Default is selective.

2.2. Command-Line Arguments 15
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-e, --endo-only-solution Store basis solutions for endoneurial geometry ONLY

Default: False

-r, --render-deform Pop-up window will render deformation operations

Default: False

-S, --auto-submit Automatically submit fibers after each run

Default: False

-c, --comsol-progress Print COMSOL progress to stdout

Default: False

-C, --comsol-progress-popup Show COMSOL progress in a pop-up window

Default: False

tidy_samples

Remove specified files from Sample directories

run tidy_samples [-h] [-f FILENAME] sample_indices [sample_indices ...]

Positional Arguments

sample_indices Space separated sample indices to tidy

Named Arguments

-f, --filename Filename to clear

import_n_sims

Move NEURON outputs into ASCENT directories for analysis

run import_n_sims [-h] [-f | -D] run_indices [run_indices ...]

Positional Arguments

run_indices Space separated run indices to import
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Named Arguments

-f, --force Import n_sims even if all thresholds are not found

Default: False

-D, --delete-nsims After importing delete n_sim folder from NSIM_EXPORT_PATH

Default: False

clean_samples

Remove all files except those specified from Sample directories

run clean_samples [-h] [-R] sample_indices [sample_indices ...]

Positional Arguments

sample_indices Space separated sample indices to clean

Named Arguments

-R, --full-reset Clear all files except sample.json and model.json

Default: False

mock_morphology_generator

Generate mock morpology for an ASCENT run

run mock_morphology_generator [-h] mock_sample_index

Positional Arguments

mock_sample_index Mock Sample Index to generate

install

install ASCENT

run install [-h] [--no-conda]

2.2. Command-Line Arguments 17
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Named Arguments

--no-conda Skip conda portion of installation

Default: False

env_setup

Set ASCENT environment variables

run env_setup [-h]

build_dataset

Export dataset from ASCENT runs in SPARC format

run build_dataset [-h]
dataset_indices [dataset_indices ...] {query,generate} ...

Positional Arguments

dataset_indices Space separated dataset indices to export

stage Possible choices: query, generate

build_dataset stage

Sub-commands

query

Use query criteria to build excel output

run build_dataset query [-h]

generate

Generate dataset (keeps files) from excel output

run build_dataset generate [-h] [-f]
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Named Arguments

-f, --force Overwrite existing dataset

Default: False

2.2.2 submit.py

ASCENT: Automated Simulations to Characterize Electrical Nerve Thresholds

usage: submit.py [-h] [-p PARTITION] [-n NUM_CPU] [-m JOB_MEM] [-j NUM_JOBS]
[-l] [-A] [-s] [-S SLURM_PARAMS] [-c] [-L | -C] [-v]
[run_indices ...]

Positional Arguments

run_indices Space separated indices to submit NEURON sims for

Named Arguments

-p, --partition If submitting on a cluster, overrides slurm_params.json

-n, --num-cpu For local submission: set number of CPUs to use, overrides run.json

-m, --job-mem For cluster submission: set amount of RAM per job (in MB), overrides
slurm_params.json

-j, --num-jobs For cluster submission: set number of jobs per array, overrides slurm_params.json

-l, --list-runs List info for available runs.z If supplying this argument, do not pass any run indices

-A, --all-runs Submit all runs in the present export folder. If supplying this argument, do not
pass any run indices

Default: False

-s, --skip-summary Begin submitting fibers without asking for confirmation

Default: False

-S, --slurm-params For cluster submission: string for additional slurm parameters (enclose in quotes)

-c, --force-recompile Force submit.py to recompile NEURON files

Default: False

-L, --local-submit Set submission context to local, overrides run.json

Default: False

-C, --cluster-submit Set submission context to cluster, overrides run.json

Default: False

-v, --verbose Print detailed submission info

Default: False

2.2. Command-Line Arguments 19
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2.3 Information on ASCENT controls

2.3.1 Morphology Input Files

Each mask must be binary (i.e., white pixels (‘1’) for the segmented tissue and black pixels (‘0’) elsewhere) and must
use Tagged Image File Format (i.e., .tif, or .tiff).

Note: For more information on segmentation methods, see [Pelot et al., 2020]. Segmentation (i.e., marking of mor-
phological boundaries) can be performed with paid softwares (e.g., NIS Elements, Adobe Photoshop) as well as free
software (e.g., ImageJ, Gimp).

All masks must be defined within the same field of view, be the same size, and be the same resolution. To convert
between pixels of the input masks to dimensioned length (micrometers), the user must specify a "ScaleInputMode"
in Sample (JSON Configuration Files). If using the mask input mode, a mask for the scale bar (s.tif) of known length
(oriented horizontally) must be provided (see “Scale Bar” in Fig 2) and the length of the scale bar must be indicated in
Sample (JSON Configuration Files). If using the ratio input mode, the user explicitly specifies the micrometers/pixel
of the input masks in Sample (JSON Configuration Files), and no scale bar image is required.

The user is required to set the "MaskInputMode" in Sample ("mask_input") to communicate the contents of the
segmented histology files (JSON Configuration Files). Ideally, segmented images of boundaries for both the “outers”
(o.tif) and “inners” (i.tif) of the perineurium will be provided, either as two separate files (o.tif and i.tif)
or combined in the same image (c.tif) (see “Inners”, “Outers”, and “Combined” in Fig 2). However, if only in-
ners are provided—which identify the outer edge of the endoneurium—a surrounding perineurium thickness is defined
by the "PerineuriumThicknessMode" in Sample ("ci_perineurium_thickness"); the thickness is user-defined,
relating perineurium thickness to features of the inners (e.g., their diameter). It should be noted that defining nerve mor-
phology with only inners does not allow the model to represent accurately fascicles containing multiple endoneurium
inners within a single outer perineurium boundary (“peanut” fascicles; see an example in Fig 2); in this case, each
inner trace will be assumed to represent a single independent fascicle that does not share its perineurium with any other
inners; more accurate representation requires segmentation of the “outers” as well.

The user is required to set the "NerveMode" in Sample (“nerve”) to communicate the contents of the segmented
histology files (JSON Configuration Files). The outer nerve boundary, if present, is defined with a separate mask (n.
tif). In the case of a compound nerve with epineurium, the pipeline expects the outer boundary of the epineurium
to be provided as the “nerve”. In the case of a nerve with a single fascicle, no nerve mask is required—in which case
either the outer perineurium boundary (if present) or the inner perineurium boundary (otherwise) is used as the nerve
boundary—although one may be provided if epineurium or other tissue that would be within the cuff is present in the
sample histology.

Lastly, an “orientation” mask (a.tif) can be optionally defined. This mask should be all black except for a small portion
that is white, representing the position to which the cuff must be rotated. The angle is measured relative to the centroid
of the nerve/singular fascicle, so this image should be constructed while referencing n.tif (or, if monofascicular,
i.tif, o.tif, or c.tif). By default, the 0º position of our cuffs correspond with the coordinate halfway along the
arc length of the cuff inner diameter (i.e., the cuff will be rotated such that the sample center, cuff contact center, and
centroid of the white portion of a.tif form a line) while the circular portion of a cuff’s diameter is centered at the
origin (Note: this rotation process uses "angle_to_contacts_deg" and "fixed_point" in a “preset” cuff’s JSON
file, see Creating Custom Cuffs and Cuff Placement on the Nerve). If a.tif is provided, other cuff rotation methods
("cuff_shift" in Model, which calculate "pos_ang") are overridden.

The user must provide segmented image morphology files, either from histology or the
mock_morphology_generator.py script, with a specific naming convention in the input/ directory.

• Raw RGB image, to be available for convenience and used for data visualization: r.tif (optional).

• Combined (i.e., inners and outers): c.tif.
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• Inners: i.tif

– An “inner” is the internal boundary of the perineurium that forms the boundary between the perineurium
and the endoneurium.

• Outers: o.tif

– An “outer” is the external boundary of the perineurium that forms the boundary between the perineurium
and the epineurium or extraneural medium.

• Scale bar: s.tif (scale bar oriented horizontally, required unless scale input mode is set to ratio).

• Nerve: n.tif (optional for monofascicular nerves).

• Orientation: a.tif (optional).

For an example of input files, see Fig 2. The user must properly set the "MaskInputMode" in Sample ("mask_input")
for their provided segmented image morphology files (JSON Configuration Files).

2.3.2 Control of medium surrounding nerve and cuff electrode

The medium surrounding the nerve and cuff electrode (e.g., fat, skeletal muscle) must contain a “proximal” domain,
which runs the full length of the nerve, and may optionally include a “distal” domain. The parameterization for the
geometry of the “proximal” and “distal” domains is shown below. For details on how to define the “proximal” and
“distal” domain geometries and meshing parameters, see Model Parameters.

Fig. 2: The user must define a “proximal” domain, and may optionally define a “distal” domain for independent assign-
ment of meshing parameters for the site of stimulation from the rest of the FEM. The “proximal” domain runs the full
length of the nerve and is anchored at (0,0,0). The distal domain’s radius and length may be independently assigned,
and the entire distal domain may be shifted (“shift”: (x, y, z)). Having a proximal domain that is overly voluminous can
significantly decrease COMSOL meshing efficiency and even, rarely, cause errors. At all costs, avoid having a proximal
or distal domain whose boundary intersects with a geometry (other than the nerve ends, which are by definition at the
longitudinal boundaries of the proximal domain) or the boundary of other geometries (e.g., the cuff-nerve boundary);
this will likely create a meshing error.
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2.3.3 Cuff placement on nerve

This section provides an overview of how the cuff is placed on the nerve. The compute_cuff_shift() method
within Runner (src/runner.py) determines the cuff’s rotation around the nerve and translation in the (x,y)-plane. The
pipeline imports the coordinates of the traces for the nerve tissue boundaries saved in samples/<sample_index>/
slides/0/0/sectionwise2d/ which are, by convention, shifted such that the centroid of the nerve is at the origin
(0,0) (i.e., nerve centroid from best-fit ellipse if nerve trace (n.tif) is provided, inner or outer best-fit ellipse centroid
for monofascicular nerves without nerve trace). Importantly, the nerve sample cross-section is never moved from or
rotated around the origin in COMSOL. By maintaining consistent nerve location across all Model’s for a Sample, the
coordinates in fibersets/ are correct for any orientation of a cuff on the nerve.

ASCENT has different CuffShiftModes (i.e., "cuff_shift" parameter in Model) that control the translation of the
cuff (i.e., “shift” JSON Object in Model) and default rotation around the nerve (i.e., "pos_ang" in Model). Runner’s
compute_cuff_shift() method is easily expandable for users to add their own CuffShiftModes to control cuff
placement on the nerve.

The rotation and translation of the cuff are populated automatically by the compute_cuff_shift() method based
on sample morphology, parameterization of the “preset” cuff, and the CuffShiftMode, and are defined in the “cuff”
JSON Object (“shift” and “rotate”) in Model.

For “naïve” CuffShiftModes (i.e., "NAIVE_ROTATION_MIN_CIRCLE_BOUNDARY",
"NAIVE_ROTATION_TRACE_BOUNDARY") the cuff is placed on the nerve with rotation according to the param-
eters used to instantiate the cuff from part primitives (Part Primitives and Custom Cuffs). If the user would
like to rotate the cuff from beyond this position, they may set the "add_ang" parameter in Model (Model Pa-
rameters). For naïve CuffShiftModes, the cuff is shifted along the vector from (0,0) in the direction of the
"angle_to_contacts_deg" parameter in the “preset” JSON file. "NAIVE_ROTATION_MIN_CIRCLE_BOUNDARY"
CuffShiftMode moves the cuff toward the nerve until the nerve’s minimum radius enclosing circle is within the
distance of the "thk_medium_gap_internal" parameter for the cuff. "NAIVE_ROTATION_TRACE_BOUNDARY"
CuffShiftMode moves the cuff toward the nerve until the nerve’s outermost Trace (i.e., for monofascicular nerve
an inner or outer, and same result as "NAIVE_ROTATION_MIN_CIRCLE_BOUNDARY" for nerve’s with epineurium) is
within the distance of the "thk_medium_gap_internal" parameter for the cuff. Note: orientation masks (a.tif)
are ignored when using these modes.

For “automatic” CuffShiftModes (i.e., "AUTO_ROTATION_MIN_CIRCLE_BOUNDARY",
"AUTO_ROTATION_TRACE_BOUNDARY") the cuff is rotated around the nerve based on the size and position of
the nerve’s fascicle(s) before the cuff is moved toward the nerve sample (see image below). The point at the intersec-
tion of the vector from (0,0) in the direction of the "angle_to_contacts_deg" parameter in the “preset” JSON file
with the cuff (i.e., cuff’s “center” in following text) is rotated to meet a specific location of the nerve/monofascicle’s
surface. Specifically, the center of the cuff is rotated around the nerve to make (0,0), the center of the cuff, and Sample’s
"fascicle_centroid" (computed with Slide’s fascicle_centroid() method, which calculates the area and
centroid of each inner and then averages the inners’ centroids weighted by each inner’s area) colinear. If the user would
like to rotate the cuff from beyond this position, they may set the "add_ang" parameter in Model (Model Parameters).
The user may override the default “AUTO” rotation of the cuff on the nerve by adding an orientation mask (a.tif)
to align a certain surface of the nerve sample with the cuff’s center (../Running_ASCENT/Info.md#morphology-
Input-Files)). This behavior depends on the cuff’s "fixed_point" parameter (Creating Custom Cuffs) The
"AUTO_ROTATION_MIN_CIRCLE_BOUNDARY" CuffShiftMode moves the cuff toward the nerve until the nerve’s
minimum radius enclosing circle is within the distance of the "thk_medium_gap_internal" parameter for the cuff.
"AUTO_ROTATION_TRACE_BOUNDARY" CuffShiftMode moves the cuff toward the nerve until the nerve’s outermost
Trace (i.e., for monofascicular nerve an inner or outer, and same result as "AUTO_ROTATION_MIN_CIRCLE_BOUNDARY"
for nerve’s with epineurium) is within the distance of the "thk_medium_gap_internal" parameter for the cuff.

The default z-position of each part along the nerve is defined in the “preset” cuff JSON file by the expression assigned
to the part instance’s “Center” parameter (referenced to z = 0 at one end of the model’s proximal cylindrical domain).
However, if the user would like to move the entire “preset” cuff along the length of the nerve, in the “cuff” JSON Object
within Model, the user may change the “z” parameter.

Since some cuffs can open in response to a nerve diameter larger than the manufactured cuff’s inner diameter, they
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Fig. 3: Demonstration of cuff placement on a multifascicular nerve (top) and a monofascicular nerve with-
out epineurium (bottom) with the same “preset” cuff (Purdue.json) for three different cuff rotations using the
"AUTO_ROTATION_TRACE_BOUNDARY" CuffShiftMode. The cuff rotations are different in the top and bottom rows
since the point on the surface of the nerve sample closest to the most endoneurium is unique to each sample (black
arrows). Additional angles of rotation were applied to the cuff directly using the “add_ang” parameter in the Model’s
“cuff” JSON Object (red arrows).

maybe be parameterized as a function of "R_in". In this case, in the “preset” cuff JSON, the “expandable” Boolean
parameter is true. If the cuff is “expandable” and the minimum enclosing diameter of the sample is larger than the
cuff, the program will modify the angle for the center of the cuff to preserve the length of materials. If the cuff is not
expandable and the sum of the minimum enclosing circle radius of the sample and "thk_medium_gap_internal"
are larger than the inner radius of the cuff, an error is thrown as the cuff cannot accommodate the sample morphology.

The inner radius of the cuff is defined within the list of “params” in each “preset” cuff configuration file as "R_in",
and a JSON Object called “offset” contains a parameterized definition of any additional buffer required within the
inner radius of the cuff (e.g., exposed wire contacts as in the Purdue.json cuff “preset”). Each key in the “offset”
JSON Object must match a parameter value defined in the “params” list of the cuff configuration file. For each key in
“offset”, the value is the multiplicative coefficient for the parameter key to include in a sum of all key-value products.
For example, in Purdue.json:

"offset": {
"sep_wire_P": 1, // separation between outer boundary of wire contact and internal

// surface of insulator
"r_wire_P": 2 // radius of the wire contact’s gauge

}

This JSON Object in Purdue.json will instruct the system to maintain added separation between the internal surface
of the cuff and the nerve of:

The div element has its own alignment attribute, align.

2.3.4 Simulation Protocols

Fiber response to electrical stimulation is computed by applying electric potentials along the length of a fiber from
COMSOL as a time-varying signal in NEURON. The stimulation waveform, saved in a n_sim’s data/inputs/
directory as waveform.dat, is unscaled (i.e., the maximum current magnitude at any timestep is +/-1), and is then
scaled by the current amplitude in RunSim.hoc to either simulate fiber thresholds of activation or block with a bisection
search algorithm, or response to set amplitudes.
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Binary search

In searching for activation thresholds (i.e., the minimum stimulation amplitude required to generate a propagating action
potential) or block thresholds (i.e., the minimum stimulation amplitude required to block the propagation of an action
potential) in the pipeline, the NEURON code uses a bisection search algorithm.

The basics of a bisection search algorithm are as follows. By starting with one value that is above threshold (i.e.,
upper bound) and one value that is below threshold (i.e., lower bound), the program tests the midpoint amplitude to
determine if it is above or below threshold. If the midpoint amplitude is found to be below threshold, the midpoint
amplitude becomes the new lower bound. However, if the midpoint amplitude is found to be above threshold, the
midpoint amplitude becomes the new upper bound. At each iteration of this process, half of the remaining amplitude
range is removed. The process is continued until the termination criteria is satisfied (e.g., some threshold resolution
tolerance is achieved). The average performance of a bisection search algorithm is (log(n)) where n is the number of
elements in the search array (i.e., linearly spaced range of amplitudes).

In the pipeline, the bisection search protocol parameters (i.e., activation or block criteria, threshold criteria, method for
searching for starting upper- and lower bounds, or termination criteria) are contained in the “protocol” JSON Object
within Sim (Sim Parameters).

Activation threshold protocol

The pipeline has a NEURON simulation protocol for determining thresholds of activation of nerve fibers in response
to extracellular stimulation. Threshold amplitude for fiber activation is defined as the minimum stimulation amplitude
required to initiate a propagating action potential. The pipeline uses a bisection search algorithm to converge on the
threshold amplitude. Current amplitudes are determined to be above threshold if the stimulation results in at least
n_AP propagating action potentials detected at 75% of the fiber’s length (note: location can be specified by user with
"ap_detect_location" parameter in Sim) (Sim Parameters). The parameters for control over the activation threshold
protocol are found in Sim within the “protocol” JSON Object (Sim Parameters).

Block threshold protocol

The pipeline has a NEURON simulation protocol for determining block thresholds for nerve fibers in response to
extracellular stimulation. Threshold amplitude for fiber block is defined as the minimum stimulation amplitude required
to block a propagating action potential. The simulation protocol for determining block thresholds starts by delivering
the blocking waveform through the cuff. After a user-defined delay during the stimulation onset period, the protocol
delivers a test pulse (or a train of pulses if the user chooses) where the user placed it (see “ind” parameter in Sim within
the "intracellular_stim" JSON Object (Sim Parameters)), near the proximal end. The code checks for action
potentials near the distal end of the fiber (see "ap_detect_location" parameter in Sim within the “threshold” JSON
Object (Sim Parameters)). If at least one action potential is detected, then transmission of the test pulse occurred (i.e.,
the stimulation amplitude is below block threshold). However, the absence of an action potential indicates block (i.e.,
the stimulation amplitude is above block threshold). The pipeline uses a bisection search algorithm to converge on
the threshold amplitude. The parameters for control over the block threshold protocol are found in Sim within the
“protocol” JSON Object (Sim Parameters).

The user must be careful in setting the initial upper and lower bounds of the bisection search for block thresholds.
Especially for small diameter myelinated fibers, users must be aware of and check for re-excitation using a stimulation
amplitude sweep [Pelot et al., 2017].
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Response to set amplitudes

Alternatively, users may simulate the response of nerve fibers in response to extracellular stimulation for a user-specified
set of amplitudes. The “protocol” JSON Object within Sim contains the set of amplitudes that the user would like to
simulate (Sim Parameters).

2.3.5 Implementation of NEURON fiber models

Myelinated fiber models

The CreateAxon_Myel.hoc file is loaded in Wrapper.hoc if the user chooses either "MRG_DISCRETE",
"MRG_INTERPOLATION", or "SMALL_MRG_INTERPOLATION_V1". The length of each section in NEURON varies de-
pending on both the diameter and the “FiberGeometry” mode chosen in Sim.

MRG discrete diameter (as previously published)

The “FiberGeometry” mode "MRG_DISCRETE" in Sim instructs the program to simulate a double cable structure for
mammalian myelinated fibers [McIntyre et al., 2004, McIntyre et al., 2002]. In the pipeline, we refer to this model
as "MRG_DISCRETE" since the model’s geometric parameters were originally published for a discrete list of fiber di-
ameters: 1, 2, 5.7, 7.3, 8.7, 10, 11.5, 12.8, 14.0, 15.0, and 16.0 m. Since the MRG fiber model has distinct geomet-
ric dimensions for each fiber diameter, the parameters are stored in config/system/fiber_z.json as lists in the
"MRG_DISCRETE" JSON Object, where a value’s index corresponds to the index of the discrete diameter in “diame-
ters”. The parameters are used by the Fiberset class to create fibersets/ (i.e., coordinates to probe potentials/
from COMSOL) for MRG fibers.

MRG interpolated diameters

The "FiberGeometry" mode "MRG_INTERPOLATION" in Sim instructs the program to simulate a double cable struc-
ture for mammalian myelinated fibers for any diameter fiber between 2 and 16 µm (throws an error if not in this range)
by using an interpolation over the originally published fiber geometries [McIntyre et al., 2004, McIntyre et al., 2002].
In the pipeline, we refer to this model as "MRG_INTERPOLATION" since it enables the user to simulate any fiber diameter
between the originally published diameters.

The parameters in the "MRG_INTERPOLATION" JSON Object in config/system/fiber_z.json are used by the
Fiberset class to create fibersets/ (i.e., coordinates at which to sample potentials/ from COMSOL) for interpo-
lated MRG fibers. Since the parameter values relate to fiber “diameter” as a continuous variable, the expressions for all
the dimensions that change with fiber diameter, as shown below, are stored as a String that is computed using Python’s
built-in "eval()" function.

We compared fiber activation thresholds between the originally published MRG fiber models and the interpolated MRG
ultrastructure (evaluated at the original diameters) at a single location in a rat cervical vagus nerve stimulated with the
bipolar Purdue cuff. Each fiber was placed at the centroid of the best-fit ellipse of the monofascicular nerve sample.
The waveform was a single biphasic pulse using "BIPHASIC_PULSE_TRAIN_Q_BALANCED_UNEVEN_PW" with 100 µs
for the first phase, 100 µs interphase (0 mA), and 400 µs for the second phase (cathodic/anodic at one contact and
anodic/cathodic at the other contact). The thresholds between the originally published models and the interpolation of
the MRG fiber diameters are compared in the image below. The threshold values were determined using a bisection
search until the upper and lower bound stimulation amplitudes were within 1%.
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Fig. 4: Piecewise polynomial fits to published MRG fiber parameters. Single quadratic fits were used for all parameters
except for internode length, which has a linear fit below 5.643 µm (using MRG data at 2 and 5.7 µm) and a single
quadratic fit at diameters greater than or equal to 5.643 µm (using MRG data >= 5.7 µm); 5.643 µm is the fiber diameter
at which the linear and quadratic fits intersected. The fiber diameter is the diameter of the myelin. “Paranode 1” is the
MYSA section, “paranode 2” is the FLUT section, and “internode” is the STIN section. The axon diameter is the same
for the node of Ranvier and MYSA (“node diameter”), as well as for the FLUT and STIN (“axon diameter”). The node
and MYSA lengths are fixed at 1 and 3 m, respectively, for all fiber diameters.
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Fig. 5: Comparison of thresholds between the originally published models and the interpolation of the MRG fiber
diameters (evaluated at the original diameters). Thresholds are expected to vary between the originally published
models and the interpolated fiber geometries given their slightly different ultrastructure parameters. Used original
MRG thresholds as reference.
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Small fiber MRG interpolated diameters - Version 1

The "FiberGeometry" mode "SMALL_MRG_INTERPOLATION_V1" in Sim instructs the program to simulate a double
cable structure for mammalian myelinated fibers for any diameter fiber between 1.011 µm and 16 µm. We redefined the
geometric dimensions of myelinated fibers because the MRG geometries were not parameterized for small diameters
<2 µm present in the rat cervical vagus nerve. We fit equations to ultrastructure parameter data from small fiber
diameters in the literature (Figure A). We performed all linear or quadratic fits in MATLAB R2018a (‘fit’ function
with ‘poly1’ or ‘poly2’ option). We subtracted the mean of the independent variables from each independent variable
data point to ensure fit stability and avoid multicollinearity as well as to produce readily interpretable fit parameters. We
weighted or transformed the dependent or independent variable to ensure nonnegative parameter values with means and
uncertainties that tracked the data from the literature. Specifically, for FLUT length and internodal length, we performed
weighted linear least squares regression (via the ‘Weight’ option of the ‘fit’ function) with weights equal to the inverse
of the square of the FLUT length or internodal length, respectively, due to the observation that data uncertainty was
proportional to the parameter value itself. For internodal axon diameter and nodal axon diameter, we performed linear
least squares regression on the g-ratio (i.e., ratio of internodal axon diameter to myelin diameter) and on the ratio of
the nodal axon diameter to the internodal axon diameter. For the number of myelin lamellae, we performed linear least
squares regression on the natural log of the number of lamellae. The transformations and weighting are reflected in the
final fit equations shown in Figure A.

Small myelinated fiber models that used the original MRG model ion channel conductances generated multiple action
potentials per stimulus pulse. Therefore, we increased the maximum conductance of voltage-gated potassium ion
channels (gkbar = 0.116 S/cm2) and decreased the maximum conductance of fast voltage-gated sodium ion channels
(gnabar = 2.333 S/cm2) to obtain models that fired a single action potential per stimulus pulse. With the default
combination of maximum conductance values (i.e., gnabar=3 S/cm^2 & gkbar=0.8 S/cm^2), multiple irregular action
potentials occurred at some small fiber diameters (Figure B). Scaling gnabar and gkbar independently by 0 .33, 0.56,
0.78, 1.00, 1.22, 1.44, 1.67 and simulating all possible conductance combinations revealed that increasing the gnabar
or decreasing gkbar could further increase firing or produce other unusual transmembrane potentials (Figure B). In
contrast, decreasing the fast sodium channel’s maximum conductance or increasing the potassium channel’s maximum
conductance could decrease multiple action potential firing. For all our analyses in the main text, we set gnabar to 2.333
S/cm^2 and gkbar to 0.116 S/cm^2 because the transmembrane potentials at those maximum conductances exhibited
only a single action potential across all simulated axons (Figure C). We implemented the new small diameter MRG
fiber model as described in [Peña et al., 2024].

Unmyelinated Fiber Models

The pipeline includes several unmyelinated (i.e., C-fiber) models [Rattay and Aberham, 1993, Sundt et al., 2015,
Tigerholm et al., 2014]. Users should be aware of the "delta_zs" parameter that they are using in config/system/
fiber_z.json, which controls the spatial discretization of the fiber (i.e., the length of each section).

2.3.6 Defining and assigning materials in COMSOL

Materials are defined in the COMSOL “Materials” node for each material “function” indicated in the “preset” cuff
configuration file (i.e., cuff “insulator”, contact “conductor”, contact “recess”, and cuff “fill”) and nerve domain (i.e.,
endoneurium, perineurium, epineurium). Material properties for each function are assigned in Model’s “conductivi-
ties” JSON Object by either referencing materials in the default materials library (config/system/materials.json)
by name, or with explicit definitions of a materials name and conductivity as a JSON Object (Material Parameters).
See Add Material Definitions for code one how this happens.
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Fig. 6: Figure A. Models of ultrastructure parameters for myelinated fibers (model equations denoted above each panel;
Gaussian noise specified as N(mean, std)). Models were constructed via linear regression of ultrastructure parameters
from the literature (yellow dots) to quantify the mean and variance of each parameter (black dotted line and gray shaded
area). The gray areas represent the 95% confidence interval of the data variability. (A) Internodal length (INL) vs. fiber
diameter (D) (fit to data from adult cat shown in Figure 3 of [Hursh, 1939]), with uncertainty modeled as a fraction of
internodal length. The STIN length is calculated as the internodal length (panel A), minus the nodal length (fixed at 1
µm), minus twice the MYSA length (fixed at 3 µm), minus twice the FLUT length (panel E). (B) Ratio of nodal axon
diameter (dn) to internodal axon diameter (da) (fit to data from Figures 3 & 4 of [Rydmark, 1981]). The nodal axon
diameter is also equal to the MYSA axon diameter. (C) Number of myelin lamellae (nl) (fit to data from Figures 3A
to 3C of [Friede and Samorajski, 1967]), with data log-transformed to exploit the discrete nature of the parameter via
assumption of a Poisson distribution of noise. (D) Internodal axon diameter (fit to data from Figure 3 of [Friede and
Samorajski, 1967] and Figure 3 (proximal and distal) from [Fazan et al., 1997]), which was transformed to g-ratio (ratio
of internodal axon diameter to myelin diameter) for fitting. This parameter is also equal to the FLUT axon diameter.
(E) FLUT length (LFLUT) (fit to data from [McIntyre et al., 2004, McIntyre et al., 2002]), with uncertainty modeled
as a fraction of FLUT length.
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Fig. 7: Figure B. Transmembrane potential traces at a single node of a 50 mm-long, 1.6 m diameter myelinated fiber
across a range of fast sodium channel maximum conductances (gnabar, in S/cm^2; row labels) and a range of maximum
potassium channel conductance values (gkbar, in S/cm^2; column labels). The default conductances from (63) are
gnabar=3 S/cm^2 and gkbar 0.8 S/cm^2 (center panel). We stimulated each axon with an intracellular stimulus pulse
of 0.8 nA amplitude at the second node of Ranvier, and we recorded the transmembrane potential at the node closest
to the 40 mm point along each axon.

Fig. 8: Figure C. Action potentials across myelinated fiber diameters with gnabar=2.333 S/cm^2 and gkbar=0.116
S/cm^2. The line colors are not unique across fiber diameters, but the latencies are ordered from fastest fiber (9 m) to
the slowest fiber (1.011 m). We stimulated each axon with an intracellular stimulus pulse of 0.8 nA amplitude at the
second node of Ranvier, and recorded the transmembrane potential at the node we closest to the 40 mm point along
each axon.
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Adding and assigning default material properties

Default material properties defined in config/system/materials.json are listed in Table A. To accom-
modate automation of frequency-dependent material properties (for a single frequency, i.e., sinusoid), param-
eters for material conductivity that are dependent on the stimulation frequency are calculated in Runner’s
compute_electrical_parameters() method and saved to Model before the handoff() method is called. Our
pipeline supports calculation of the frequency-dependent conductivity of the perineurium based on measurements
from the frog sciatic nerve [Weerasuriya et al., 1984] using the rho_weerasuriya() method in the Python Waveform
class. See Fig. 2 for identification of tissue types in a compound nerve cross-section (i.e., epineurium, perineurium,
endoneurium).

Table A. Default material conductivities.

Material Conductivity References
silicone 10^-12 [S/m] [Callister and Rethwisch, 2011]
platinum 9.43 10^6 [S/m] [de Podesta, 1997]
endoneurium {1/6, 1/6, 1/1.75} [S/m] [Jr. and BeMent, 1965, Pelot et al., 2018]
epineurium 1/6.3 [S/m] [Grill and Mortimer, 1994, Pelot et al., 2017, Stolinski, 1995]
muscle {0.086, 0.086, 0.35} [S/m] [Gielen et al., 1984]
fat 1/30 [S/m] [Geddes and Baker, 1967]
encapsulation 1/6.3 [S/m] [Grill and Mortimer, 1994]
saline 1.76 [S/m] [Horch and Kipke, 2017]
perineurium 1/1149 [S/m] [Pelot et al., 2018, Weerasuriya et al., 1984]

Definition of perineurium

The perineurium is a thin highly resistive layer of connective tissue and has a profound impact on thresholds of ac-
tivation and block. Our previous modeling work demonstrates that representing the perineurium with a thin layer
approximation (Rm = rho_peri_thk), rather than as a thinly meshed domain, reduces mesh complexity and is a reason-
able approximation [Pelot et al., 2018]. Therefore, perineurium can be modeled with a thin layer approximation (except
with “peanut” fascicles; see an example in Fig 2), termed “contact impedance” in COMSOL (if Model’s "use_ci"
parameter is true (Model Parameters)), which relates the normal component of the current density through the surface

to the drop in electric potentials and the sheet resistance :

The sheet resistance is defined as the sheet thickness divided by the material bulk conductivity :

Our previously published work quantified the relationship between fascicle diameter and perineurium thickness [Pelot
et al., 2020] (Table A).

Table A. Previously published relationships between fascicle diameter and perineurium thickness.

Species peri_thk: f (species, dfasc) References
Rat peri_thk = 0.01292*dfasc + 1.367 [um] [Pelot et al., 2020]
Pig peri_thk = 0.02547*dfasc + 3.440 [um] [Pelot et al., 2020]
Human peri_thk = 0.03702*dfasc + 10.50 [um] [Pelot et al., 2020]
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The “rho_perineurium” parameter in Model can take either of two modes:

• “RHO_WEERASURIYA”: The perineurium conductivity value changes with the frequency of electrical stimu-
lation (for a single value, not a spectrum, defined in Model as “frequency”) and temperature (using a Q10 adjust-
ment, defined in Model as “temperature”) based on measurements of frog sciatic perineurium [Pelot et al., 2018,
Weerasuriya et al., 1984]. The equation is defined in src/core/Waveform.py in the rho_weerasuriya()
method.

• “MANUAL”: Conductivity value assigned to the perineurium is as explicitly defined in either materials.json
or Model without any corrections for temperature or frequency.

2.4 Plotter Module

Defines plotting functions used for analyzing data.

See examples/analysis for examples of how to use.

src.core.plotter.heatmaps(*facetdata, data=None, ax=None, **kwargs)
Create heatmap for a single axis using the _HeatmapPlotter class.

To create a single heatmap, call the class directly Use a Seaborn FacetGrid to create multiple heatmaps in one
figure, using the FacetGrid.map() method. Note that data cannot be aggregated across n_sims (e.g., each call
of heatmaps() must recieve only one threshold per fiber).

Parameters

• facetdata – Recieves data from FacetGrid if using to plot an array.

• data – DataFrame to plot, used if manually passing data.

• ax – Axis to plot on.

• kwargs – Arguments to be passed to _HeatmapPlotter class constructor.

Returns
Plotting axis.

class src.core.plotter._HeatmapPlotter(data, mode: str = 'fibers', sample_object=None,
sim_object=None, missing_color='red',
suprathresh_color='blue', subthresh_color='green',
cutoff_thresh=None, cmap=None, colorbar=True,
min_max_ticks=False, cuff_orientation=False,
plot_outers=False, cbar_kws=None, scatter_kws=None,
line_kws=None, min_thresh=None, max_thresh=None,
color=None)

Class used to contruct heatmap plots.

This class should not be called directly by the user. Rather, the user should call the heatmaps() function, which
will pass any keyword arguments to this class’s constructor.

__init__(data, mode: str = 'fibers', sample_object=None, sim_object=None, missing_color='red',
suprathresh_color='blue', subthresh_color='green', cutoff_thresh=None, cmap=None,
colorbar=True, min_max_ticks=False, cuff_orientation=False, plot_outers=False,
cbar_kws=None, scatter_kws=None, line_kws=None, min_thresh=None, max_thresh=None,
color=None)

Initialize heatmap plotter.

Parameters
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• data – DataFrame containing data to plot.

• mode – Plotting mode. There are multiple options:

– 'fibers': Plot a point for each fiber, using a heatmap of thresholds for color.

– 'fibers_on_off': Plot a point for each fiber. If the fiber threshold is above cut-
off_thresh, suprathresh_color is used. Otherwise, subthresh_color is used.

– 'inners': Plot each inner as filled in, using a heatmap of thresholds for color. The
mean threshold for that inner is used, thus if only one fiber is present per inner, that
threshold is used.

– 'inners_on_off': Plot each inner as filled in. If the mean inner threshold is above
cutoff_thresh, suprathresh_color is used. Otherwise, subthresh_color is used.

• sample_object – Sample object to use for plotting. Automatically loaded if not provided.

• sim_object – Simulation object to use for plotting. Automatically loaded if not provided.

• missing_color – Color to use for missing data.

• suprathresh_color – Color to use for suprathresh data.

• subthresh_color – Color to use for subthresh data.

• cutoff_thresh – Threshold to use for plotting on_off modes.

• cmap – Color map to override default.

• colorbar – Whether to add a colorbar.

• min_max_ticks – Whether to add only the minimum and maximum ticks to the colorbar.

• cuff_orientation – Whether to plot a point for the cuff orientation.

• plot_outers – Whether to plot the fascicle outers.

• cbar_kws – Keyword arguments to pass to matplotlib.colorbar.Colorbar.

• scatter_kws – Keyword arguments to pass to matplotlib.pyplot.scatter.

• line_kws – Keyword arguments to pass to matplotlib.pyplot.plot.

• min_thresh – Minimum threshold to use for plotting. Use this to override the default
minimum.

• max_thresh – Maximum threshold to use for plotting. Use this to override the default
maximum.

• color – Color passed in by seaborn when using FacetGrid. Not used.

plot(ax)
Make heatmap plot.

Parameters
ax – Axis to plot on.

Returns
Plotting axis.

plot_inners_fibers(ax)
Plot inners and fibers using the colors determined in determine_colors().

Parameters
ax – axis to plot on
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create_cmap()

Create color map and mappable for assigning colorbar and ticks.

static set_ax(ax)
Remove axis elements.

Parameters
ax – axis to plot on

determine_colors(threshdf )
Determine colors for inners and fibers based on user selected mode.

Parameters
threshdf – DataFrame of thresholds.

add_colorbar(ax)
Add colorbar to heatmap plot.

Parameters
ax – axis to plot on

get_objects()

Get sample and sim objects for plotting.

validate(data)
Check that data is valid for plotting.

Parameters
data – DataFrame of thresholds.

plot_cuff_orientation(ax)
Plot the orientation of the cuff.

Parameters
ax – axis to plot on

src.core.plotter.ap_loctime(query_object: Query, n_sim_filter: List[int] | None = None, plot: bool = False,
plot_distribution: bool = False, n_sim_label_override: str | None = None,
model_labels: List[str] | None = None, save: bool = False, subplots=False,
nodes_only=False, amp=0)

Plot time and location of action potential initiation.

Parameters

• query_object – Query object to use for plotting.

• n_sim_filter – List of n_sim values to plot.

• plot – Whether to plot the ap location node for each fiber.

• plot_distribution – Whether to plot action potential initiation node distribution.

• n_sim_label_override – Label to use for n_sim.

• model_labels – Labels to use for models.

• save – Whether to save the plot.

• subplots – Whether to plot in subplots.

• nodes_only – Whether to plot only nodes.

• amp – Amplitude of action potential.
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2.5 ASCENT on oSPARC

The oSPARC platform hosts two publicly accessible implementations of ASCENT. From the oSPARC documentation:
“The aim of o2S2PARC is to establish a comprehensive, freely accessible, intuitive, and interactive online platform
for simulating peripheral nerve system neuromodulation/stimulation and its impact on organ physiology in a precise
and predictive manner.” ASCENT is available on oSPARC in two modes: guided mode, where you can choose from a
limited selection of parameters to simulate activation thresholds, and the full implementation of ASCENT. The oSPARC
documentation provides general instructions on using the oSPARC platform; the instructions below describe how to
set up a run of ASCENT on oSPARC using either guided mode or the full implementation.

The guided mode implementation of ASCENT on oSPARC enables simulation of activation thresholds for neural fibers
using extracellular potentials from pre-solved finite element models. Users select a value for each parameter from
drop-down menus.

Tip: Remember to reference the oSPARC documentation for more information on how to navigate the platform.

1. Create a new study using the “ASCENT Guided Mode” template.

2. Use the GUI in the “ascent-runner” node, located in the middle of the top task bar, to choose your desired
parameters, and then click the “Run” button.

3. Once “ascent-runner” finishes, open the Jupyter ASCENT node. Open a terminal instance, and enter the com-
mands:

4. cd work/workspace

5. bash run_first.sh

6. Threshold heatmaps will be created in examples/analysis

The full ASCENT pipeline can be executed on oSPARC.

1. Create a new study, using either the “ASCENT Tutorial” template (See the ASCENT tutorial) or the “ASCENT
Base” template to set up your personalized simulation.

2. If using the tutorial template, the tutorial configs are already arranged under run index 0. If using the base
template, create ASCENT’s configuration files, per standard ASCENT usage.

3. Open a terminal instance from the Launcher tab.

4. Ensure you are in ASCENT’s root directory. If not, change your working directory to ASCENT’s root folder
using cd ~/work/workspace/ascent.

5. Run ASCENT as normal using the command line.

6. When running the analysis script, save the figures in your chosen location using plt.savefig().

Note: Only one COMSOL license seat is available on oSPARC. When running the pipeline, you can use the
--wait-for-license command line argument to specify an amount of time to wait for the COMSOL license to
become available.
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CHAPTER

THREE

JSON CONFIGURATION FILES

3.1 JSON Configuration File Overview

We store parameters in JSON configuration files because the JSON format is accessible, readable, and well-documented
for metadata interchange. The configuration files inform the pipeline in its operations and provide a traceable history
of the parameters used to generate data.

For each JSON file, we provide a brief overview, a statement of where the file must be placed in the directory structure,
and a description of its contents. For a detailed description of each JSON file (i.e., which parameters are required or
optional, known value data types, and known values), see JSON Parameters. Though JSON does not allow comments,
users may want to add notes to a JSON file (e.g., to remember what a Sample, Model, or Sim file was used to accom-
plish). The user can simply add a key to the JSON file that is not in use (e.g., “notes”) and provide a value (String)
with a message.

Note: Example configuration files are provided in the config/templates/ directory.

3.1.1 User configuration files

run.json

The run.json file is passed to pipeline.py to instruct the program which Sample, Model(s), and Sim(s) to run. All
run.json files are stored in the config/user/runs/ directory. Since each Sample, Model, and Sim is indexed, their
indices are used as the identifying values in run.json. Additionally, the file contains break points that enable the user
to terminate the pipeline at intermediate processes, flags for user control over which COMSOL files are saved, flags
to selectively build a "debug_geom.mph" file of just the nerve or cuff electrode, and flags to recycle previous meshes
where appropriate. Lastly, the run.json file reports which Model indices were generated successfully in COMSOL
and indicates if the user is submitting the NEURON jobs to a SLURM cluster or locally.

sample.json

An example Sample configuration file is stored in config/templates/ for users to reference when defining their
own input nerve morphology from histology or from the mock nerve morphology generator (Mock Morphology). A
user’s sample.json file is saved in the samples/<sample_index>/ directory. The file contains information about
the sample’s properties and how to process the nerve morphology before placing the nerve in a cuff electrode. The
pipeline’s processes informed by Sample output the Python object sample.obj.

The information in Sample must parallel how the sample morphology binary images are saved on the user’s ma-
chine (sample name, path to the sample). The user must define the "mask_input" parameter in Sample to in-
dicate which set of input masks will be used. Sample also contains parameters that determine how the morphol-
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Fig. 1: Overview of the run.json file

Fig. 2: Overview of the sample.json file
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ogy is processed before being represented in the FEM such as shrinkage correction (“shrinkage”), required min-
imum fascicle separation ("boundary_separation"), presence of epineurium (“nerve”), perineurium thickness
("ci_perineurium_thickness"), deformation method (“deform”), reshaped nerve profile ("reshape_nerve"),
and parameters for specifying CAD geometry input file formats for nerve morphology (“write”). Sample also con-
tains information about the mask scaling (i.e. "scale_bar_length" if supplying a binary image of a scale bar or, if
no scale bar image, "scale_ratio").

The value of the "ci_perineurium_thickness" in Sample refers to a JSON Object in config/system/
ci_peri_thickness.json that contains coefficients for linear relationships between inner diameter and per-
ineurium thickness (i.e., thkperi,inner = a*(diameterinner) + b). In ci_peri_thickness.json, we provided a
"PerineuriumThicknessMode" named "GRINBERG_2008", which defines perineurium thickness as 3% of in-
ner diameter [Grinberg et al., 2008], and relationships for human, pig, and rat vagus nerve perineurium thickness
(i.e., "HUMAN_VN_INHOUSE_200601", "PIG_VN_INHOUSE_200523", and "RAT_VN_INHOUSE_200601") [Pelot et al.,
2020]. As additional vagus nerve morphometry data become available, users may define perineurium thickness with
new models by adding the coefficients to this JSON file._**

model.json

Fig. 3: Overview of the model.json file

An example Model configuration file is stored in config/templates/ for users to reference when creating their
own FEMs. As such, model.json, which is stored in the file structure in samples/<sample_index>/models/
<model_index>/, contains information to define an FEM uniquely. Model defines the cuff electrode geometry and
positioning, the simulated environment (e.g., surrounding medium dimensions, material properties (including temper-
ature and frequency factors of material conductivity), and physics), the meshing parameters (i.e., how the volume is
discretized), and output statistics (e.g., time required to mesh, mesh element quality measures).
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sim.json

Fig. 4: Overview of the sim.json file

An example Sim configuration file is stored in config/templates/ for users to reference when creating their own
simulations of fiber responses to stimulation for a sample in a FEM. All simulation configuration files are stored in the
config/user/sims/ directory. Sim defines fiber types, fiber locations in the FEM, fiber length, extracellular (e.g.,
pulse repetition frequency) and intracellular stimulation, and input parameters to NEURON (e.g., parameters to be saved
in the output, bisection search algorithm bounds and resolution). Since users may want to sweep parameters at the Sim
configuration level (e.g., fiber types, fiber locations, waveforms), a pared down copy of Sim that contains a single value
for each parameter (rather than a list) is saved within the corresponding n_sims/ directory (Sim Parameters). These
pared down files are provided for convenience, so that the user can inspect which parameters were used in a single
NEURON simulation, and they do not hold any other function within the pipeline.

3.1.2 Special use configuration files

mock_sample.json

The mock_sample.json file, which is stored in the file structure in config/user/mock_samples/
<mock_sample_index>/, is used to define binary segmented images that serve as inputs to the pipeline. In
the “populate” JSON Object, the user must define the “PopulateMode” (e.g., EXPLICIT, TRUNCNORM, UNIFORM
defined by the “mode” parameter), which defines the process by which the nerve morphology is defined in the
MockSample Python class. Each "PopulateMode" requires a certain set of parameters to define the nerve and to
define and place the fascicles; the set of parameters for each "PopulateMode" are defined in config/templates/
mock_sample_params_all_modes.json.

Probabilistic “PopulateModes” (i.e., TRUNCNORM, UNIFORM) populate an elliptical nerve with elliptical fascicles
of diameter and eccentricity defined by a statistical distribution. Since the nerve morphology parameters are defined
probabilistically, a “seed” parameter is required for the random number generator to enable reproducibility. The fas-
cicles are placed at randomly chosen locations within the nerve using a disk point picking method; the fascicles are
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placed at a rotational orientation randomly chosen from 0-360o. If a fascicle is placed in the nerve without maintain-
ing a user-defined "min_fascicle_separation" distance from the other fascicles and the nerve, another randomly
chosen point within the nerve is chosen until either a location that preserves a minimum separation is achieved or the
program exceeds a maximum number of attempts ("max_attempt_iter").

The EXPLICIT "PopulateMode" populates an elliptical nerve with elliptical fascicles of user-defined sizes, locations,
and rotations. The program validates that the defined fascicle ellipses are at least "min_fascicle_separation"
distance apart; otherwise, if the conditions are not met, the program throws an error.

query_criteria.json

In data analysis, summary, and plotting, the user needs to inform the program which output data are of interest.
The query_criteria.json file stores the “criteria” for a user’s search through previously processed data. The
query_criteria.json file may be used to guide the Query class’s searching algorithm in the run() method. We
suggest that all query_criteria.json-like files are stored in the config/user/query_criteria/ directory; how-
ever, the location of these files is arbitrary, and when initializing the Query object, the user must manually pass in the
path of either the query_criteria.json-like file or the hard-coded criteria as a Python dictionary. An instance of the
Query class contains the “criteria” and an empty _result, which is populated by Query’s run() method with found
indices of Sample, Model, and Sim that match the criteria given.

Query’s run() method loops through all provided indices (i.e., Sample, Model, Sim) in the query criteria, and calls
_match() when a possible match is found. Note that the presence of an underscore in the _match() method name
indicates that it is for internal use only (not to be called by external files). The _match() method compares its two
inputs, (1) query_criteria.json and (2) either Sample (i.e., sample.json), Model (i.e., model.json), or Sim
(sim.json); the two JSON files are loaded into memory as Python dictionaries. The method returns a Boolean indi-
cating if the input configuration file satisfies the restricted parameter values defined in query_criteria.json. The
user may explicitly specify the indices of the Sample, Model, and Sim configuration files of interest simultaneously
with restricted criteria for specific parameter values. The indices added will be returned in addition to matches found
from the search criteria in the Sample, Model, and Sim criteria JSON Objects.

The query_criteria.json file contains JSON Objects for each of the Sample, Model, and Sim configuration files.
Within each JSON Object, parameter keys can be added with a desired value that must be matched in a query result.
If the parameter of interest is found nested within a JSON Object structure or list in the configuration file, the same
hierarchy must be replicated in the query_criteria.json file.

The query_criteria.json parameter "partial_matches" is a Boolean indicating whether the search should
return indices of Sample, Model, and Sim configuration files that are a partial match, i.e., the parameters in
query_criteria.json are satisfied by a subset of parameters listed in the found JSON configuration.

The query_criteria.json parameter "include_downstream" is a Boolean indicating whether the search should
return indices of downstream (Sample>Model>Sim) configurations that exist if match criteria are not provided for
them. For example, if only criteria for a Sample and Model are provided, Query will return the indices of Sample
and Model that match the criteria. In addition, the indices of the Sims downstream of the matches are included
in the result if "include_downstream" is true (since the user did not specify criteria for Sim). Otherwise, if
"include_downstream" is false, no Sim indices are returned.
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3.1.3 System configuration files

Note: system configuration files are located in config/system/.

env.json

The env.json file stores the file paths for:

• COMSOL

• Java JDK

• The project path (i.e., the path to the root of the ASCENT pipeline)

• Destination directory for NEURON simulations to run (this could be the directory from which the user calls
NEURON, or an intermediate directory from which the user will move the files to a computer cluster)

• Destination directory for exported datasets created with scripts/build_dataset.py

When the pipeline is run, the key-value pairs are stored as environment variables so that they are globally accessible.

materials.json

The materials.json file contains default values for material properties that can be assigned to each type of neural
tissue, each electrode material, the extraneural medium, and the medium between the nerve and inner cuff surface. The
materials are referenced by using their labels in the “conductivities” JSON Object of Model.

fiber_z.json

The fiber_z.json file defines z-coordinates to be sampled along the length of the FEM for different fiber types to be
simulated in NEURON. In some instances, the section lengths are a single fixed value. In other instances, such as the
MRG model [McIntyre et al., 2002], the section lengths are defined for each fiber diameter in a discrete list. Section
lengths can also be a continuous function of a parameter, such as fiber diameter, defined as a mathematical relationship
in the form of a string to be evaluated in Python. Additionally, the file contains instructions (e.g., flags) that corresponds
to fiber-type specific operations in NEURON.

ci_perineurium_thickness.json

In the case of fascicles with exactly one inner perineurium trace for each outer perineurium trace, to reduce the required
computational resources, the pipeline can represent the perineurium using a thin layer approximation in COMSOL (Per-
ineurium Properties). Specifically, if Model’s "use_ci" parameter is true, the perineurium is modeled as a surface
with a sheet resistance (termed “contact impedance” in COMSOL) defined by the product of the resistivity and thick-
ness. The thickness is calculated as half of the difference between the effective circular diameters of the outer and inner
perineurium traces. If each fascicle is only defined by a single trace (rather than inner and outer perineurium traces),
the user chooses from a list of modes in Sample for assigning a perineurium thickness (e.g., 3% of fascicle diameter
[Grinberg et al., 2008], "ci_perineurium_thickness" parameter in Sample).
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mesh_dependent_model.json

Since meshing can take substantial time and RAM, if the FEM has the same geometry and mesh parameters as a previous
model, this JSON file allows the mesh to be reused if the mesh.mph file is saved. In mesh_dependent_model.json,
the keys match those found in Model, however, instead of containing parameter values, each key’s value is a Boolean
indicating true if the parameter value must match between two Model configurations to recycle a mesh, or false if a
different parameter value would not prohibit a mesh be reused. The mesh_dependent_model.json file is used by
our ModelSearcher Java utility class (Java Utility Classes).

3.2 JSON Configuration Parameter Guide

Notes:

See JSON Overview for a summary of the contents and usage of each of the following JSON files used in ASCENT.

"//" is not valid JSON syntax; comments are not possible in JSON. However, we sparingly used this notation in the
JSON examples below to provide context or more information about the associated line. Each value following a key
in the syntax denotes the type of the value, not its literal value: “[<Type X>, . . . ]” syntax indicates that the type is an
array of Type X. Occasionally, a single value may be substituted for the list if only a single value is desired, but this
functionality differs between keys, so be sure to read the documentation before attempting for any given key-value pair.
If a parameter is optional, the entire key-value can be omitted from the JSON file and the default value will be used.

For calculated values, the user can either keep the key with a dummy value or remove the key entirely when setting up
JSON files for a pipeline run.

JSON Object names, keys, and values (e.g., filename strings) are case-sensitive.

The order of key-value pairs within a JSON Object does not matter. Saving/loading the file to/from memory is likely
to reorder the contents of the file.

3.2.1 run.json

Named file: config/user/runs/<run_index>.json

Purpose

Instructs the pipeline on which input data and user-defined parameters to use in a single program “run”, where one “run”
configuration serves a single Sample and a list of Model(s) and Sims(s). Enables operational control (breakpoints,
which FEM files to save/discard). Keeps track of successful/failed FEMs in Java.

Syntax

To declare this entity in config/user/runs/, use the following syntax:

{
"pseudonym": String,
"sample": Integer, // note, only one value here!
"models": [Integer, ...], // pipeline will create all pairwise combos of ...
"sims": [Integer, ...], // ... models and sims
"recycle_meshes": Boolean,
"models_exit_status": [Boolean, ...], // one entry for each Model
"endo_only_solution": Boolean,

(continues on next page)
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"keep": {
"debug_geom": Boolean,
"mesh": Boolean,
"bases": Boolean

},
"export_behavior": String,
"popup_plots": Boolean,
"auto_submit_fibers": Boolean

}

Properties

"pseudonym": This value (String) informs pipeline print statements, allowing users to better keep track of the purpose
of each configuration file. Optional.

"sample": The value (Integer) of this property sets the sample configuration index (”Sample”). Note that this is only
ever one value. To loop Samples, create a Run for each. Required.

"models": The value ([Integer, . . . ]) of this property sets the model configuration indices (”Model”). Required.

"sims": The value ([Integer, . . . ]) of this property sets the simulation configuration indices (”Sim”). Required.

"recycle_meshes": The value (Boolean) of this property instructs the pipeline to search for mesh matches for recy-
cling a previously generated FEM mesh if set to true. If this property is not specified, the default behavior of the pipeline
is false, meaning that it will not search for and recycle a mesh match (see ModelSearcher (Java Utility Classes) and
mesh_dependent_model.json (Mesh Dependent Model)). Optional.

"endo_only_solution": The value (Boolean) determines what data the electric currents solution will save. Since
fibers are sampled from the endoneurium, after the solution is completed, only the endoneurial Ve data is necessary
to run fiber simulations. If "endo_only_solution" is true, then COMSOL will save ONLY the Ve data for the
endoneurium. If false, COMSOL will save Ve data for the entire model. Recommended value is true unless you
intend to generate plots or other analyses which require Ve data for geometry other than the endoneurium. If this key-
value pair is not present, defaults to false. This parameter only affects storage space after the solution has completed,
and will not have any effect on memory usage or solution time.

"models_exit_status": The value ([Boolean, . . . ]) of this property indicates if Java successfully made the FEMs
for the corresponding model indices (“models” property). The user does not need to include this property before
performing a run of the pipeline, as it is automatically added in Java (COMSOL FEM processes) and is then used to
inform Python operations for making NEURON simulations. The value will contain one value for each Model listed
in “models”. If a Model fails, the pipeline will skip it and proceed to the next one. Automatically added.

"keep": The value (Boolean) of each property results in the program keeping or deleting large COMSOL *.mph files
for the "debug_geom.mph", "mesh.mph" and bases/ for a given Model. If a keep property is not defined, the default
behavior is true and the associated *.mph file is saved. If "mesh.mph" is saved, the file can later be used if another
Model is a suitable “mesh match” and "recycle_meshes" is true (see ModelSearcher (Java Utility Classes) and
mesh_dependent_model.json (Mesh Dependent Model)). If bases/ are saved, a new Sim for a previously computed
Sample and Model can be probed along new fibersets/ to create potentials/. Optional.

"export_behavior": The value (String) instructs the pipeline how to behave if an export n_sim directory (i.e., AS-
CENT_NSIM_EXPORT_PATH/n_sims/) already exists. There are three options: "selective" is the default behav-
ior, output directories which already exist will be skipped, but any which do not exist will be generated, "overwrite"
will remove the extant directory, and generate a new clean output directory in its place, "error" instructs the pipeline
to exit if any export n_sim directory is found to already exist.

“popup_plots”: The value (Boolean) will instruct the pipeline to display plots (e.g. sample plot, fiberset plot, wave-
form plot) in a popup window. This is in addition to saving the plots in the relevant folders (i.e., the sample and sim
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folders).

"auto_submit_fibers": The value (Boolean), if true, will cause the program to automatically start fiber simulations
after each run is completed. If submitting locally, the program will not continue to the next run until all fiber simulations
are complete. If submitting via a computer cluster, the next run will start after all batch NEURON jobs are submitted.

Example

{
"pseudonym": "template_run",
"sample": 0,
"models": [0],
"sims": [0],
"recycle_meshes": true,
"models_exit_status": [true],
"endo_only_solution": true,
"keep": {
"debug_geom": true,
"mesh": true,
"bases": true

},
"popup_plots": false,
"export_behavior": "selective"

}

3.2.2 sample.json

Named file: samples/<sample_index>/sample.json

Purpose

Instructs the pipeline on which sample-specific input data and user-defined parameters to use for processing nerve
sample morphology inputs in preparation for 3D representation of the sample in the FEM (Sample) (Creating Nerve
Morphology in COMSOL).

Syntax

To declare this entity in samples/<sample_index>/sample.json, use the following syntax:

{
"sample": String,
"pseudonym": String,
"sex": String,
"level": String,
"scale": {
"scale_bar_length": Double,
"scale_ratio": Double,
"shrinkage": Double

},
"boundary_separation": {

(continues on next page)
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"fascicles": Double,
"nerve": Double

},
"modes": {
"mask_input": String,
"scale_input": String,
"nerve": String,
"deform": String,
"ci_perineurium_thickness": String,
"reshape_nerve": String,
"shrinkage_definition": String,
"contour_approximation": String,

},
"smoothing": {
"nerve_distance": Double,
"fascicle_distance": Double

},
"image_preprocessing": {
"fill_holes": Boolean,
"object_removal_area": Integer

},
"morph_count": Integer,
"deform_ratio": Double,
"plot": Boolean,
"plot_folder": Boolean,
"render_deform": Boolean,
"Morphology": {
"Nerve": {
"Area": Double

},
"Fascicles": [
{
"outer": {
"area": Double,
"x": Double,
"y": Double,
"a": Double,
"b": Double,
"angle": Double

},
"inners": [
{
"area": Double,
"x": Double,
"y": Double,
"a": Double,
"b": Double,
"angle": Double

},
...

]
},

(continues on next page)
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...
]

}
}

Properties

“sample”: The value (String) of this property sets the sample name/identifier (e.g., “Rat1-1”) to relate to bookkeep-
ing for input morphology files (Data Hierarchy). The value must match the directory name in input/<NAME>/ that
contains the input morphology files. Required.

"pseudonym": This value (String) informs pipeline print statements, allowing users to better keep track of the purpose
of each configuration file. Optional.

“sex”: The value (String) of this property assigns the sex of the sample. Optional, for user records only.

“level”: The value (String) of this property assigns the location of the nerve sample (e.g., cervical, abdominal,
pudendal). Optional, for user records only.

“scale”

• “scale_bar_length”: The value (Double, units: micrometer) is the length of the scale bar in the binary image
of the scale bar provided (s.tif, note that the scale bar must be oriented horizontally). Required if scale_input
= “MASK”.

• “scale_ratio”: The value (Double, units: micrometers/pixel) is the ratio of micrometers per pixel for the input
mask(s). Required if scale_input = “RATIO”.

• “shrinkage”: The value (Double) is the shrinkage correction for the nerve morphology binary images provided
as a decimal (e.g., 0.20 results in a 20% expansion of the nerve, and 0 results in no shrinkage correction of the
nerve). Required, must be greater than 0. Shrinkage correction scaling is linear (i.e. a nerve with diameter d and
area a scaled by scaling factor s will have a final diameter of d_final=d*(1+s) and a final area a_final = a*(1+s)2)

“boundary_separation”

• “fascicles”: The value (Double, units: micrometer) is the minimum distance required between boundaries
of adjacent fascicles (post-deformation, see Deformable in Python Morphology Classes)). Required for samples
with multiple fascicles.

– Note that this is a distinct parameter from “min_fascicle_separation” in mock_sample.json, which
controls the minimum distance between fascicles in the binary image mask inputs to the pipeline, which is
later deformed to fit in the cuff electrode using Deformable (Python Morphology Classes)).

• “nerve”: The value (Double, units: micrometer) is the minimum distance required between the boundaries of a
fascicle and the nerve (post-deformation, see Deformable in Python Morphology Classes)). Required if “nerve”
in Sample is “PRESENT”.

“modes”:

• “mask_input”: The value (String) is the “MaskInputMode” that tells the program which segmented histology
images to expect as inputs for fascicles. Required.

– As listed in Enums (Enums), modes include

1. “INNERS”: Program expects segmented images of only inner fascicle boundaries.

2. “INNER_AND_OUTER_SEPARATE”: Program expects segmented image of inners in one file and seg-
mented image of outers in another file.
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3. “INNER_AND_OUTER_COMPILED”: Program expects a single segmented image containing boundaries
of both inners and outers.

• “scale_input”: The value (String) is the “ScaleInputMode” that tells the program which type of scale input
to look for.

– As listed in Enums (Enums), known “ScaleInputModes” include

1. “MASK”: The program will determine image scale from the user’s scale bar mask image and the
scale_bar_length parameter.

2. “RATIO”: The program will use the scale directly specified in scale_ratio. If using this option, a
scale bar image need not be provided.

• “nerve”: The value (String) is the “NerveMode” that tells the program if there is an outer nerve boundary
(epineurium) segmented image to incorporate into the model. Required.

– As listed in Enums (Enums), known modes include

1. “PRESENT”: Program expects a segmented image for a nerve (n.tif) to incorporate into the model.
The value must be PRESENT if multifascicular nerve, but can also be PRESENT if monofascicular.

2. “NOT_PRESENT”: Program does not try to incorporate a nerve boundary into the model. The value
cannot be NOT_PRESENT if multifascicular nerve, but can be NOT_PRESENT if monofascicular.

• “deform”: The value (String) is the “DeformationMode” that tells the program which method to use to deform
the nerve within the cuff. If the “NerveMode” (i.e., “nerve” parameter) is defined as “NOT_PRESENT” then the
“DeformationMode” (i.e., “deform” parameter) must be “NONE”. Required.

– As listed in Enums (Enums), known modes include

1. “NONE”: The program does not deform the nerve when it is placed in the cuff electrode. In the
pipeline’s current implementation, this should be the value for all nerve samples without epineurium
(i.e., “NOT_PRESENT” for “nerve”).

2. “PHYSICS”: The program uses a physics-based deformation of the nerve to the final inner profile
of the nerve cuff, morphing from the original trace towards a circular trace. In the pipeline’s cur-
rent implementation, this is the only “DeformationMode” for deforming compound nerve samples.
See “deform_ratio” below; if deform_ratio = 0, then the original nerve trace is used and if
deform_ratio = 1, then the nerve trace will be made circular.

• “ci_perineurium_thickness”: The value (String) is the “PerineuriumThicknessMode” that tells the pro-
gram which method to use to define perineurium thickness. Required.

– As listed in Enums (Enums), known “PerineuriumThicknessModes” include

1. “MEASURED”: The program determines the average thickness of the perineurium using the pro-
vided inner and outer boundaries (i.e., “MaskInputMode”: INNER_AND_OUTER_SEPARATE or
INNER_AND_OUTER_COMPILED). The thickness is determined by finding the half the difference in di-
ameters of the circles with the same areas as the inner and outer traces of the fascicle.

2. Linear relationships between fascicle diameter and perineurium thickness as stored in config/
system/ci_peri_thickness.json:

∗ “GRINBERG_2008”

∗ “PIG_VN_INHOUSE_200523”

∗ “RAT_VN_INHOUSE_200601”

∗ “HUMAN_VN_INHOUSE_200601”

• “reshape_nerve”: The value (String) is the “ReshapeNerveMode” that tells the program which final nerve
profile (post-deformation) to use when “deform” is set to “PHYSICS”. Required.
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– As listed in Enums (Enums), known “ReshapeNerveModes” include

1. “CIRCLE”: The program creates a circular nerve boundary with a preserved cross-sectional area (i.e.,
for multifascicular nerves/nerves that have epineurium).

2. “NONE”: The program does not deform the nerve boundary (i.e., for monofascicular nerves/nerves that
do not have epineurium).

• “shrinkage_definition”: The value (String) is the “ShrinkageMode” that tells the program how to interpret
the “scale”->”shrinkage” parameter, which is provided as a decimal (i.e., 0.2 = 20%). Optional, but assumes the
mode “LENGTH_FORWARDS” if omitted, since this was the original behavior before this mode was added.

– As listed in Enums (Enums), known “ShrinkageModes” include

1. “LENGTH_BACKWARDS”: The value for “scale”->”shrinkage” refers to how much the length (e.g., ra-
dius, diameter, or perimeter) of the nerve cross-section was reduced from the fresh tissue to the imaged
tissue.

∗ Formula: r_post = r_original * (1-shrinkage)

2. “LENGTH_FORWARDS”: The value for “scale”->”shrinkage” refers to how much the length (e.g., radius,
diameter, or perimeter) of the nerve cross-section increases from the imaged tissue to the fresh tissue.

∗ Formula: r_post = r_original / (1+shrinkage)

3. “AREA_BACKWARDS”: The value for “scale”->”shrinkage” refers to how much the area of the nerve
cross-section was reduced from the fresh tissue to the imaged tissue.

∗ Formula: A_post = A_original * (1-shrinkage)

4. “AREA_FORWARDS”: The value for “scale”->”shrinkage” refers to how much the area of the nerve
cross-section increases from the imaged tissue to the fresh tissue.

∗ Formula: A_post = A_original / (1+shrinkage)

• “contour_approximation”: The value (String) is the “ContourMode” that tells the program which method to
use for approximating contours derived from input morphology masks. See the OpenCV Contour Documentation
for more information on how these modes function.

– As listed in Enums (Enums), known “ContourModes” include:

1. “SIMPLE”: Contours are generated using cv2.CHAIN_APPROX_SIMPLE.

2. “NONE”: Contours are generated using cv2.CHAIN_APPROX_NONE.

“smoothing”: Smoothing is applied via a dilating the nerve/fascicle boundary by a specified distance value and then
shrinking it by that same value.

• “nerve_distance”: Amount (Double) to smooth nerve boundary. Units of micrometers.

• “fascicle_distance”: Amount (Double) to smooth fascicle boundaries (inners and outers). Units of microm-
eters.

“image_preprocessing”: Operations applied to the input masks before analysis.

• “fill_holes”: The value (Boolean) indicates whether to fill gaps in the binary masks. If true, any areas of
black pixels completely enclosed by white pixels will be turned white.

• “object_removal_area”: The value (Integer) indicates the maximum size of islands to remove from the binary
masks. Any isolated islands of white pixels with area less than or equal to object_removal_area will be turned
black. Units of pixels.

“morph_count”: The value (Integer) can be used to set the number of intermediately deformed nerve traces between
the boundary_start and boundary_end in Deformable (Python Morphology Classes) if the “DeformationMode”
is “PHYSCIS”. An excessively large number for morph_count will slow down the deformation process, though a
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number that is too small could result in fascicles “escaping” from the nerve. Optional; if not specified default value is
36.

“deform_ratio”: The value (Double, range: 0 to 1) can be used to deform a nerve if “DeformationMode” is
“PHYSICS” to an intermediately deformed boundary_end. For example, if the “ReshapeNerveMode” is “CIRCLE”
and deform_ratio = 1, then the boundary_end will be a circle. However, if the “ReshapeNerveMode” is
“CIRCLE” and deform_ratio = 0, the boundary_end will be the original nerve trace. A value between 0 and 1
will result in a partially deformed nerve “on the way” to the final circle nerve boundary. Optional, but default value is
1 if not defined explicitly. Note: if deform_ratio = 0, no changes to the nerve boundary will occur, but the physics
system will ensure the requirements in "boundary_separation" are met.

“plot”: The value (Boolean) determines whether the program will generate output plots of sample morphology. If
true, plots are generated, if false, no plots are generated

“plot_folder”: The value (Boolean) describes plotting behavior (if enabled). If true, plots are generated in the folder
samples/<sample_index>/plots, if false, plots will pop up in a window.

"render_deform": The value (Boolean) if true, causes the pipeline to generate a popup window and display a video
of sample deformation as it occurs.

“Morphology”: This JSON Object is used to store information about the area and best-fit ellipse information of
the nerve and fascicles (outer and inners). The user does not set values to these JSON structures, but they are a
convenient record of the nerve morphometry for assigning model attributes based on the anatomy and data analysis.
Units: micrometer2 (area); micrometer (length). User does NOT manually set these values. Automatically populated.
The values a and b are the full width and height of the ellipse major and minor axes, respectively (i.e., analogous to
diameter rather than radius of a circle).

"rotation": The value (Double) instructs the pipeline to rotate the nerve about its centroid by the specified amount
(units = Degrees). This parameter may NOT be used if providing an orientation tif image (See Morphology Input
Files).

Example

{
"sample": "Rat16-3",
"pseudonym": "template sample",
"sex": "M",
"level": "Cervical",
"scale": {
"scale_bar_length": 500,
"scale_ratio": 12.5,
"shrinkage": 0

},
"boundary_separation": {
"fascicles": 10.0,
"nerve": 10.0

},
"modes": {
"mask_input": "INNER_AND_OUTER_COMPILED",
"scale_input": "MASK",
"nerve": "NOT_PRESENT",
"deform": "NONE",
"ci_perineurium_thickness": "MEASURED",
"reshape_nerve": "NONE",
"shrinkage_definition": "LENGTH_BACKWARDS",

(continues on next page)
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"contour_approximation": "NONE"
},
"smoothing": {
"nerve_distance": 0,
"fascicle_distance": 0

},
"image_preprocessing": {
"fill_holes": true,
"object_removal_area": 10

},
"morph_count": 36,
"deform_ratio": 1,
"render_deform": false,
"Morphology": null

}

3.2.3 model.json

Named file: samples/<sample_index>/models/<model_index>/model.json

Purpose

Contains user-defined modes and parameters to use in constructing the FEM (Model). We provide parameterized
control of model geometry dimensions, cuff electrode, material assignment, spatial discretization of the FEM (mesh),
and solution. Additionally, model.json stores meshing and solving statistics.

Syntax

To declare this entity in samples/<sample_index>/models/<model_index>/model.json, use the following syn-
tax:

{
"pseudonym": String,
"modes": {
"rho_perineurium": String,
"cuff_shift": String,
"use_ci": Boolean

},
"medium": {
"proximal": {
"distant_ground": Boolean,
"length": Double,
"radius": Double

},
"distal": {
"exist": Boolean,
"distant_ground": Boolean,
"length": Double,
"radius": Double,

(continues on next page)
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"shift": {
"x": Double,
"y": Double,
"z": Double

}
}

},
"inner_interp_tol": Double,
"outer_interp_tol": Double,
"nerve_interp_tol": Double,

// EXAMPLE for modeling a single stimulation cuff
"cuff": [{
"preset": String,
"index": Integer, // The cuff_index in sim.json defines cuff type between␣

→˓stimulating or recording.
"rotate": {
"pos_ang": Double,
"add_ang": Double

},
"shift": {
"x": Double,
"y": Double,
"z": Double

}
}],

// EXAMPLE for modeling a stimulation and recording cuff
"cuff": [
{
"preset": String,
"index": Integer, // The cuff_index in sim.json defines cuff type between␣

→˓stimulating or recording.
"rotate": {
"pos_ang": Double,
"add_ang": Double

},
"shift": {
"x": Double,
"y": Double,
"z": Double

}
},
{
"preset": String,
"index": Integer,
"rotate": {
"pos_ang": Double,
"add_ang": Double

},
"shift": {
"x": Double,

(continues on next page)
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"y": Double,
"z": Double

}
}

]

"min_radius_enclosing_circle": Double,
"mesh": {
"quality_measure": String,
"shape_order": String,
"proximal": {
"type": {
"im": String,
"name": String

},
"hmax": Double,
"hmin": Double,
"hgrad": Double,
"hcurve": Double,
"hnarrow": Double

},
"distal": {
"type": {
"im": String,
"name": String

},
"hmax": Double,
"hmin": Double,
"hgrad": Double,
"hcurve": Double,
"hnarrow": Double

},
"stats": {
"name": String,
"quality_measure_used": String,
"number_elements": Double,
"min_quality": Double,
"mean_quality": Double,
"min_volume": Double,
"volume": Double
"mesh_times": {
"distal": Double,
"proximal": Double

},

}
},
"frequency": Double,
"temperature": Double,
"conductivities": {
"recess": String,
"medium": String,

(continues on next page)

3.2. JSON Configuration Parameter Guide 53



ASCENT, Release v1.3.1

(continued from previous page)

"fill": String,
"insulator": String,
"conductor": String,
"endoneurium": String,
"perineurium": {
"label": String,
"value": Double

},
"epineurium": String

},
"solver": {
"sorder": int,
"type": String

},
"solution": {
"sol_time": Double,
"name": String

}
}

Properties

"pseudonym": This value (String) informs pipeline print statements, allowing users to better keep track of the purpose
of each configuration file. Optional.

“modes”: Each option controls different aspects of how Model functions.

• “rho_perineurium”: The value (String) is the “PerineuriumResistivityMode” that tells the program how
to calculate the perineurium conductivity in a frequency and/or temperature dependent way. Required.

– As listed in Enums (Enums), known “PerineuriumResistivityModes” include

∗ “RHO_WEERASURIYA”: Program uses mean of circuits C and D from Weerasuriya 1984 [1] (frog sciatic
nerve) (Perineurium Properties) to adjust perineurium conductivity to account for temperature and
frequency (which are both stored in model.json).

∗ “MANUAL”: Program uses the user-defined value of conductivity in “conductivities” (under “per-
ineurium”) with no automated correction for frequency.

• “cuff_shift”: The value (String) is the “CuffShiftMode” that tells the program how to shift the cuff on the
nerve (Creating Custom Cuffs and Cuff Placement on the Nerve). Required.

– As listed in Enums (Enums), known modes include

∗ “NAIVE_ROTATION_MIN_CIRCLE_BOUNDARY”: Program shifts the cuff to within a user-defined dis-
tance of the minimum bounding circle of the nerve sample. The direction of the shift is defined in the
preset cuff JSON file (Creating Custom Cuffs and Cuff Placement on the Nerve). Since this mode does
not align the cuff with the sample centroid, orientation masks (a.tif) are ignored.

∗ “NAIVE_ROTATION_TRACE_BOUNDARY”: Program shifts the cuff to within a user-defined distance of
the nerve trace boundary. The direction of the shift is defined in the preset cuff JSON file (Creating
Custom Cuffs and Cuff Placement on the Nerve). Since this mode does not align the cuff with the
sample centroid, orientation masks (a.tif) are ignored.

∗ “AUTO_ROTATION_MIN_CIRCLE_BOUNDARY”: Program shifts/rotates the cuff to within a user-
defined distance of the minimum bounding circle of the nerve sample to align with the Slide’s
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“fascicle_centroid”. The direction of the shift is defined in the preset cuff JSON file (Creating
Custom Cuffs and Cuff Placement on the Nerve).

∗ “AUTO_ROTATION_MIN_TRACE_BOUNDARY”: Program shifts/rotates the cuff to within a user-defined
distance of the nerve trace boundary to align with the Slide’s “fascicle_centroid”. The direction
of the shift is defined in the preset cuff JSON file (Creating Custom Cuffs and Cuff Placement on the
Nerve).

∗ “NONE”: Program keeps both the nerve centroid and cuff centered at (x,y) =(0,0) and no cuff rotation
is performed (Creating Custom Cuffs and Cuff Placement on the Nerve). Note: This mode will ignore
any supplied orientation image (a.tif).

• “use_ci”: The value (Boolean), if true, tells the program whether to model fascicles (outer) that have a single
inner as a sheet resistance (i.e., COMSOL “contact impedance”) to simplify the meshing of the model. If the
value is false, the program will mesh the perineurium of all fascicles. Note that fascicles that have more than one
inner per outer always have a meshed perineurium.

“medium”: The medium JSON Object contains information for the size, position, and boundary conditions (i.e.,
grounded external surface) of the proximal (i.e., cylinder containing the full length of nerve and the cuff electrode)
and distal (i.e., surrounding) medium domains. Required.

• “proximal”: The proximal JSON Object has keys “distant_ground” (Boolean) that sets the outer surface
to ground if true (if false, sets the outer surface to “current conservation”, i.e. perfectly insulating), “length”
(Double, units: micrometer), and “radius” (Double, units: micrometer) of a cylindrical medium. The proximal
cylindrical medium is centered at the origin (x,y,z)=(0,0,0), where the (x,y)-origin is the centroid of the nerve
sample (i.e., best-fit ellipse of the Trace/Nerve), and extends into only the positive z-direction for the length of
the nerve. A warning is printed to the console if the user sets “distant_ground” to true AND a distal domain
exists (see “distal” below). Required.

• “distal”: The distal JSON Object has keys analogous to the “proximal” JSON Object, but contains additional
keys “exist” (Boolean) and “shift” (JSON Object containing key-values pairs (Doubles)). The “exist” key allows
the user to toggle the existence of the distal medium, which is intended to be used to apply coarser meshing
parameters than in the proximal medium (which contains the nerve and cuff electrode along the full length of the
nerve). The “shift” JSON Object provides control for the user to move the distal medium around the proximal
medium (x,y,z) (Double, units: micrometer). Optional.

“inner_interp_tol”: The value (Double) sets the relative tolerance for the representation of the inner trace(s) in
COMSOL. When the value is set to 0, the curve is jagged, and increasing the value of this parameter increases the
smoothness of the curve. COMSOL’s “closed curve” setting interpolates the points of the curve with continuous first-
and second-order derivatives. Generally, we find an interpolation tolerance in the range of 0.01-0.02 to be appropriate,
but the user should check that the interpolation tolerance is set correctly for their input nerve sample morphology. See
the COMSOL Documentation for more info. Required.

“outer_interp_tol”: The value (Double) sets the relative tolerance for the representation of the outer trace(s) in
COMSOL. When the value is set to 0, the curve is jagged, and increasing the value of this parameter increases the
smoothness of the curve. COMSOL’s “closed curve” setting interpolates the points of the curve with continuous first-
and second-order derivatives. Generally, we find an interpolation tolerance in the range of 0.01-0.02 to be appropriate,
but the user should check that the interpolation tolerance is set correctly for their input nerve sample morphology. See
the COMSOL Documentation for more info. Required.

“nerve_interp_tol”: The value (Double) sets the relative tolerance for the representation of the nerve (i.e.
epineurium) trace in COMSOL. When the value is set to 0, the curve is jagged, and increasing the value of this param-
eter increases the smoothness of the curve. COMSOL’s “closed curve” setting interpolates the points of the curve with
continuous first- and second-order derivatives. Generally, we find an interpolation tolerance in the range of 0.001-0.005
to be appropriate, but the user should check that the interpolation tolerance is set correctly for their input nerve sample
morphology. See the COMSOL Documentation for more info. Required.

“cuff”: The cuff list containing JSON Objects with key-value pairs that define which cuff to model on the nerve in
addition to how it is placed on the nerve (i.e., rotation and translation). Up to two cuffs can be modeled with unique
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“index” values indicating whether the cuff is used for stimulation or recording. If the user would like to loop over preset
cuff designs for each cuff, then they must create a Model (model index) for each cuff preset. Required.

• “preset”: The value (String) indicates which cuff to model, selected from the list of filenames of the “preset”
cuffs in config/system/cuffs/<filename>.json (Fig 3A and Creating Custom Cuffs). Required.

• “rotate”: Contains two keys: “pos_ang” (automatically populated based on “CuffShiftMode”, i.e.,
“cuff_shift” parameter in Model) and “add_ang” (optionally set by user to rotate cuff by an additional
angle) (Cuff Placement on the Nerve).

– “pos_ang” (Double, units: degrees) is calculated by the pipeline for the “AUTO” CuffShiftModes (Cuff
Placement on the Nerve).

– “add_ang” (Double, units: degrees) is user-defined and adds additional rotation in the counterclockwise
direction. If the parameter is not specified, the default value is 0. Optional.

• “shift”: Contains three keys: “x”, “y”, and “z”. Automatically calculated based on “CuffShiftMode”.

– Each key defines the translation of the cuff in the Cartesian coordinate system (Double, units: microm-
eter). The values are automatically populated by the pipeline based on the “CuffShiftMode” (i.e.,
“cuff_shift” parameter within “modes”). Origin (x,y) = (0,0) corresponds to the centroid of the nerve
sample (or fascicle best-fit ellipse of the Trace if monofascicular), and shift in z-direction is along the
proximal medium’s (i.e., the nerve’s) length relative to the cuff “Center” (defined in preset JSON file).

• “index”: The value (Integer) is used to identify each cuff by a number. This parameter will correspond to the
“cuff_index” parameter in Simulation to define the given cuffs weights and if the cuff is used for stimulation
(index matched with "cuff_index" in "active_srcs") or recording (index matched with "cuff_index" in
"active_recs") . Each cuff should have a unique index value. The current implementation has only been tested
for up to two cuffs. Required.

“min_radius_enclosing_circle”: The value (Double, units: micrometer) is automatically defined in the program
with the radius of the minimum bounding circle of the sample, which is used for placing the cuff on the nerve for certain
CuffShiftModes. Automatically calculated.

“mesh”: The mesh JSON Object contains key-value pairs that define COMSOL’s meshing parameters (required, user-
defined) and resulting meshing statistics (automatically calculated).

• “quality_measure”: (String) COMSOL measure to use in calculating mesh quality stats. Options include
skewness, maxangle, volcircum, vollength, condition, growth. Default is “vollength” if not specified.

• “shape_order”: Order of geometric shape functions (String) (e.g., quadratic). Required.

• “proximal”: Meshing parameters for the proximal cylindrical domain (as defined in “medium”). Required
(Assigning Material Properties).

– “type”: JSON Object containing parameters/definitions specific to meshing discretization method (e.g.,
free tetrahedral “ftet”). We recommend free tetrahedral meshes. Required (Assigning Material Properties).

∗ “im”: COMSOL indexing prefix (String) (e.g., free tetrahedral “ftet”). Required.

∗ “name”: COMSOL system name (String) for the created mesh (e.g., “FreeTet”). Required.

– “hmax”: Maximum element size (Double, units: micrometer). We recommend between 1000-4000. Re-
quired.

– “hmin”: Minimum element size (Double, units: micrometer). We recommend 1. Required.

– “hgrad”: Maximum element growth (Double). We recommend between 1.8-2.5. Required.

– “hcurve”: Curvature factor (Double). We recommend 0.2. Required.

– “hnarrow”: Resolution of narrow regions (Double). We recommend 1. Required.
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• “distal”: Meshing parameters for the distal cylindrical domain (as defined in “medium”). Required if distal
domain present (see “medium”).

– “type”: JSON Object containing parameters/definitions specific to meshing discretization method (e.g.,
free tetrahedral “ftet”). We recommend free tetrahedral meshes. Required (Assigning Material Properties).

∗ “im”: COMSOL indexing prefix (String) (e.g., free tetrahedral “ftet”). Required.

∗ “name”: COMSOL system name (String) for the created mesh (e.g., “FreeTet”). Required.

– “hmax”: Maximum element size (Double, units: micrometer). We recommend between 1000-4000. Re-
quired.

– “hmin”: Minimum element size (Double, units: micrometer). We recommend 1. Required.

– “hgrad”: Maximum element growth (Double). We recommend between 1.8-2.5. Required.

– “hcurve”: Curvature factor (Double). We recommend 0.2. Required.

– “hnarrow”: Resolution of narrow regions (Double). We recommend 1. Required.

• “stats”: Meshing statistics. See COMSOL documentation for more details. Automatically populated.

– “name”: Mesher identity (String) which generated the mesh (i.e., COMSOL version)

– “quality_measure_used”: "quality measure" which was used to calculate mesh statistics. (String)

– “number_elements”: (Integer)

– “min_quality”: (Double)

– “mean_quality”: (Double)

– “min_volume”: (Double)

– “volume”: (Double)

– “mesh_times”: JSON Object containing key value parirs storing the elapsed time (in milliseconds) for
each mesh type (Proximal and Distal).

“frequency”: Defines the frequency value used for frequency-dependent material conductivities (Double, unit Hz)
(Perineurium Properties). Required only if “PerineuriumResistivityMode” is “RHO_WEERASURIYA”.

“temperature”: Defines the temperature of the nerve environment, which is used to define temperature-dependent
material conductivity and ion channel mechanisms in NEURON (Double, unit: Celsius). Required (user must verify
*.MOD files will adjust Q10 values for temperature, verified temperature is 37 °C).

“conductivities”: The conductivities JSON Object contains key-value pairs that assign materials (either previously
defined in materials.json (String), or explicitly defined in place (JSON Object)) to material functions (i.e., cuff
“insulator”, contact “conductor”, contact “recess”, cuff “fill”, “endoneurium”, “perineurium”, “epineurium”). All
materials functions that are assigned to domains in the part primitives are required. If a contact primitive contains a
selection for recessed domain, the recess material must be assigned even if there is no recessed domain in the preset’s
parameterized implementation.

• If the material is defined in place, the JSON Object value is of the following structure:

– “label”: Communicates type of material assigned to domains (String). The label is used to assign mate-
rials to domains (Assigning Material Properties). Required.

– “value”: Required. Material conductivity for isotropic materials (String, unit: S/m) OR (String,
“anisotropic”) with additional keys:

∗ “sigma_x”, “sigma_y”, “sigma_z” each with values (String, unit: S/m). Required.

“solver”: The solver JSON Object contains key-value pairs to control the solver. Required.

• “sorder”: Order of solution shape functions (int) (e.g., quadratic = 2). Required.
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• type: (String) Solver to use. Options are “direct” or “iterative”. Defaults to iterative if not provided, which uses
less RAM but takes longer. Optional.

“solution”: The solution JSON Object contains key-value pairs to keep record of FEM solver processes. Automati-
cally populated.

• “sol_time”: (Double) Time (in milliseconds) elapsed in solving electric currents.

• “name”: Solver identity (String) used to solve electric currents (i.e., COMSOL version).

Example

{
"pseudonym": "template model",
"modes": {
"rho_perineurium": "RHO_WEERASURIYA",
"cuff_shift": "AUTO_ROTATION_MIN_CIRCLE_BOUNDARY",
"use_ci": true

},
"medium": {
"proximal": {
"distant_ground": false,
"length": 12500,
"radius": 3000

},
"distal": {
"exist": true,
"distant_ground": true,
"length": 12500,
"radius": 5000,
"shift": {
"x": 0,
"y": 0,
"z": 0

}
}

},
"inner_interp_tol": 0.02,
"outer_interp_tol": 0.02,
"nerve_interp_tol": 0.002,
"cuff": {
"preset": "Purdue.json",
"rotate": {
"add_ang": 0

},
"shift": {
"x": 0,
"y": 0,
"z": 0

}
},
"mesh": {
"quality_measure": "vollength",
"shape_order": "quadratic",

(continues on next page)
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"proximal": {
"type": {
"im": "ftet",
"name": "FreeTet"

},
"hmax": 1600,
"hmin": 10,
"hgrad": 2.2,
"hcurve": 0.2,
"hnarrow": 1

},
"distal": {
"type": {
"im": "ftet",
"name": "FreeTet"

},
"hmax": 1600,
"hmin": 10,
"hgrad": 2.5,
"hcurve": 0.2,
"hnarrow": 1

}
},
"frequency": 1,
"temperature": 37,
"conductivities": {
"recess": "saline",
"medium": "muscle",
"fill": "saline",
"insulator": "silicone",
"conductor": "platinum",
"endoneurium": "endoneurium",
"perineurium": {
"label": "RHO_WEERASURIYA @ 1 Hz",
"value": "0.0008703220191470844"

},
"epineurium": "epineurium"

},
"solver": {
"sorder": 2,
"type": "iterative"

}
}
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3.2.4 sim.json

Named file: config/user/sims/<sim_index>.json

Purpose

Instructs the pipeline on which user-defined parameters to use in constructing NEURON simulation directories (Sim).
We provide parameterized control of cuff electrode contact weighting, fiber model and placement in the FEM, extra-
cellular stimulation waveform, intracellular stimulation, flags to indicate which outputs to save (e.g., state variables
of channel gating mechanisms, transmembrane potential, intracellular stimulation), and stimulation threshold-finding
protocol (Simulation Protocols).

Syntax

To declare this entity in config/user/sims/, use the following syntax:

{
"pseudonym": String,
"n_dimensions": Integer,
"active_srcs": {
"CorTec300.json": [[Double, Double]], // for example
"cuff_index": Integer // Correlates with cuff index assigned to cuff configs in␣

→˓model.json
},
"active_recs": {
"cyl_MicroLeads_300t.json":[[Double, Double, Double]], // for example
"cuff_index": Integer

},
"fibers": {
"mode": String,
"xy_trace_buffer": Double,
"z_parameters": {

// EXAMPLE diameter parameter for defining fixed diameter fibers
"diameter": [Double],

// EXAMPLE diameter parameter for TRUNCHNORM (i.e., diameters from a truncated␣
→˓normal

// distribution) which is only compatible for "MRG_INTERPOLATION" myelinated or
// unmyelinated fiber types)
"diameter":{
"mode": "TRUNCNORM",
"mu": Double,
"std": Double,
"n_std_limit": Double,
"seed": Integer

},

// EXAMPLE diameter parameter for UNIFORM (i.e., diameters from a uniform
// distribution) which is only compatible for "MRG_INTERPOLATION" myelinated or
// unmyelinated fiber types)
"diameter":{

(continues on next page)
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"mode": "UNIFORM",
"upper": Double,
"lower": Double,
"seed": Integer

},

"mode": String,
"fiber_z_shift": Integer,
"min": Double,
"max": Double,
"full_nerve_length": Boolean,
"offset": Double, // or "random" for random jitter within +/- 0.5 internodal length
"absolute_offset": Double,
"seed": Integer

},

// EXAMPLE XY Parameters for CENTROID (from best-fit ellipse of the Trace)
"xy_parameters": {
"mode": "CENTROID"

},

// EXAMPLE XY Parameters for UNIFORM_COUNT
"xy_parameters": {
"mode": "UNIFORM_COUNT",
"count": Integer,
"seed": Integer

},

// EXAMPLE XY Parameters for WHEEL
"xy_parameters": {
"mode": "WHEEL",
"spoke_count": Integer,
"point_count_per_spoke": Integer,
"find_centroid": Boolean, // centroid of inner polygon
"angle_offset": Double,
"angle_offset_is_in_degrees": Boolean

},

// EXAMPLE XY Parameters for EXPLICIT
"xy_parameters": {
"mode": "EXPLICIT",
"explicit_fiberset_index" : Integer

},

// EXAMPLE XY Parameters for EXPLICIT_3D
"xy_parameters": {
"mode": "EXPLICIT_3D",
"explicit_fiberset_index" : Integer

},

// EXAMPLE XY Parameters for UNIFORM_DENSITY
"xy_parameters": {

(continues on next page)
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(continued from previous page)

"mode": "UNIFORM_DENSITY",
"top_down": Boolean,
// top_down is true
"target_density": Double,
"minimum_number": Integer,
// top_down is false
"target_number": Integer,
"maximum_number": Integer,
// for both top_down is true and false
"seed": Integer

}
},
"waveform": {
"global": {
"dt": Double,
"on": Double,
"off": Double,
"stop": Double

},

// EXAMPLE WAVEFORM for MONOPHASIC_PULSE_TRAIN
"MONOPHASIC_PULSE_TRAIN": {
"pulse_width": Double,
"pulse_repetition_freq": Double,
"digits": Integer

},

// EXAMPLE WAVEFORM for SINUSOID
"SINUSOID": {
"pulse_repetition_freq": Double,
"digits": Integer

},

// EXAMPLE WAVEFORM for BIPHASIC_FULL_DUTY
"BIPHASIC_FULL_DUTY": {
"pulse_repetition_freq": Double,
"digits": Integer

},

// EXAMPLE WAVEFORM for BIPHASIC_PULSE_TRAIN
"BIPHASIC_PULSE_TRAIN": {
"pulse_width": Double,
"inter_phase": Double,
"pulse_repetition_freq": Double,
"digits": Integer

},

// EXAMPLE WAVEFORM for BIPHASIC_PULSE_TRAIN_Q_BALANCED_UNEVEN_PW
"BIPHASIC_PULSE_TRAIN_Q_BALANCED_UNEVEN_PW": {
"pulse_width_1": Double,
"pulse_width_2": Double,
"inter_phase": Double,

(continues on next page)
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(continued from previous page)

"pulse_repetition_freq": Double,
"digits": Integer

},

// EXAMPLE WAVEFORM for EXPLICIT
"EXPLICIT": {
"index": Integer,
"dt_atol": Double,
"period_repeats ": Integer

}
},
"intracellular_stim": {
"times": {
"pw": Double,
"IntraStim_PulseTrain_delay": Double,
"IntraStim_PulseTrain_dur": Double

},
"pulse_repetition_freq": Double,
"amp": Double,
"ind": Integer

},
"saving": {
"aploctime": Boolean,
"space": {
"vm": Boolean,
"gating": Boolean,
"times": [Double],

},
"time": {
"vm": Boolean,
"gating": Boolean,
"istim": Boolean,
"locs": [Double] OR String

},
"end_ap_times": {
"loc_min": Double,
"loc_max": Double,
"threshold": Double

}
"runtimes": Boolean,
"3D_fiber_intermediate_data": Boolean

},

// EXAMPLE PROTOCOL for FINITE_AMPLITUDES
"protocol": {
"mode": "FINITE_AMPLITUDES",
"initSS": Double,
"dt_initSS": Double,
"amplitudes": [Double, Double, ...],
"threshold": {
"value": Double,
"ap_detect_location": Double

(continues on next page)
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(continued from previous page)

}
},

// EXAMPLE PROTOCOL for ACTIVATION_THRESHOLD
"protocol": {
"mode": "ACTIVATION_THRESHOLD", //String
"initSS": Double,
"dt_initSS": Double,
"threshold": {
"value": Double,
"ap_detect_location": Double

},
"bounds_search": {
"mode": String,
"top": Double,
"bottom": Double,
"step": Double

},
"termination_criteria": {
"mode": "ABSOLUTE_DIFFERENCE",
"percent": Double

}
},

// EXAMPLE PROTOCOL for BLOCK_THRESHOLD
"protocol": {
"mode": "BLOCK_THRESHOLD", // String
"initSS": Double,
"dt_initSS": Double,
"threshold": {
"value": Double,
"ap_detect_location": Double

},
"bounds_search": {
"mode": String,
"top": Double,
"bottom": Double,
"step": Double

},
"termination_criteria": {
"mode": String,
"percent": Double

}
},
"supersampled_bases": {
"generate": Boolean,
"use": Boolean,
"dz": Double,
"source_sim": Integer

}
}

64 Chapter 3. JSON Configuration Files



ASCENT, Release v1.3.1

Properties

"pseudonym": This value (String) informs pipeline print statements, allowing users to better keep track of the purpose
of each configuration file. Optional.

“n_dimensions”: The value (Integer) is the number of parameters in Sim for which a list is provided rather than a
single value. The user sets the number of parameters they are looping over (e.g., if looping over waveform pulse width
and fiber diameter, n_dimensions = 2). We included this control to prevent the user from accidentally creating
unintended NEURON simulations. The pipeline will only loop over the first n-dimensions. Required.

“active_srcs”: The value is a JSON Object containing key-value pairs of contact weightings for preset stimulation
cuffs. Each value (List[List[Double]]) is the contact weighting used to make extracellular potentials inputs to
NEURON simulations. The order of weights matches the order of parts containing point current sources. The values
should not exceed +/-1 in magnitude, otherwise an error is thrown. For monopolar cuff electrodes, the value should
be either +1 or -1. For cuff electrodes with more than one contact (2+), the sum of weightings should be +1, -1, or 0.
Required. The potentials/ for a single fiber are calculated in the following way for an example weighting:

"example_cuff_preset.json": [[1, -1]] // [[weight1 (for src 1 on), weight2 (for src 2 on)]]

The value of potentials/ is applied to a model fiber in NEURON multiplied by the stimulation amplitude, which is either
from a list of finite amplitudes or a bisection search for thresholds (Simulation Protocols)

• “cuff_index”: The value (Integer) used to designate which cuff will be used for stimulation and which cuff will
be used for recording. The index value must correspond to the “index” value in the Model “cuff” configuration.
Required.

“active_recs”: The JSON Object value serves the same purpose as active_srcs, but provides contact weightings
for preset cuffs used for recording. Only required when modeling a recording cuff in the Model configurations.

• “cuff_index”: The value (Integer) used to designate which cuff will be used for stimulation and which cuff will
be used for recording. The index value must correspond to the “index” value in the Model “cuff” configuration.
Required.

“fibers”: The value is a JSON Object containing key-value pairs that define how potentials are sampled in the
FEM for application as extracellular potentials in NEURON (i.e., the Cartesian coordinates of the midpoint for each
compartment (i.e., section or segment) along the length of the fiber). Required.

• “mode”: The value (String) is the “FiberGeometry” mode that tells the program which fiber geometries to sim-
ulate in NEURON (NEURON Fiber Models). Required.

– As listed in Enums, known modes include

∗ “MRG_DISCRETE” (published MRG fiber model)

∗ “MRG_INTERPOLATION” (interpolates the discrete diameters from published MRG fiber models)

∗ SMALL_MRG_INTERPOLATION_V1 (interpolates diameters from published literature data on small
myelinated fibers; used by [Peña et al., 2024] to model myelinated fibers with >1.011 um diameter;
uses the same ion channels as MRG_DISCRETE and MRG_INTERPLOATION, but decreases the
maximum conductance of sodium ion channels and increases the maximum conductance of potassium
ion channels to ensure one action potential per stimulus pulse.)

∗ “TIGERHOLM” (published C-fiber model)

∗ “SUNDT” (published C-fiber model)
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∗ “RATTAY” (published C-fiber model)

– For a user to simulate a novel fiber type using the pipeline, they must define the spatial discretization of
points within the config/system/fiber_z.json file to match the dimensions of the fiber compartments
connected in NEURON. The “FiberGeometry” mode and parameters in the “fibers” JSON Object in Sim
must match the keys in config/system/fiber_z.json to select and define a fiber type (e.g., MRG re-
quires specification of fiber “diameters”).

• “xy_trace_buffer”: The value (Double, units: micrometer) indicates the minimum required distance between
the (x,y)-coordinates of a given fiber and the fascicle’s inner boundary. Since the domain boundaries are modeled
in COMSOL as an interpolation curve, the exact morphology boundary coordinates read into COMSOL will be
very close to (but not exactly equal to) those used in Python to seed fiber locations. To protect against instances
of fibers falling within the nerve boundary traces in the exact Python traces, but not in COMSOL’s interpolation
of those traces, we provided this parameter. Required.

• “z_parameters”: The value is a JSON Object containing key-value pairs to instruct the system in seeding fibers
along the length of the nerve. Required.

– “diameter” The value can take multiple forms to define the fiber diameter that the user is simulating
in NEURON (NEURON Fiber Models). The value can control simulation of either fixed diameter fibers
or fibers chosen from a distribution of diameters (note simulating a distribution of fiber diameters is only
compatible with “MRG_INTERPOLATION”myelinated or unmyelinated fiber types, not “MRG_DISCRETE”).
In Sim, only one mode of defining fiber diameters can be used. Required.

∗ Fixed diameter: the value (Double or List[Double], units: micrometer) is the diameter of all fibers
within the model. If using with “MRG_DISCRETE”, the diameters must be members of the set of pub-
lished diameters.

∗ Distribution of diameters: the value is a dictionary of key-value pairs to define the distribution of
diameters based on the “mode” parameter, which can be either “TRUNCNORM” or “UNIFORM”.

· “TRUNCNORM”

· “mode”: “TRUNCNORM” (String). Required.

· “mu”: The value (Double, units micrometer) is the mean diameter of the truncated normal distri-
bution. Required.

· “std”: The value (Double, units micrometer) is the diameter standard deviation of the truncated
normal distribution. Required.

· “n_std_limit”: The value (Double) is the number of standard deviations from the mean to
bound the truncated normal distribution. Required.

· “seed”: The value (Integer, unitless) seeds the random number generator before sampling fiber
diameters.

· “UNIFORM”

· “mode”: UNIFORM” (String). Required.

· “upper”: The value (Double, units micrometer) is the upper limit on the distribution of diameters.
Required.

· “lower”: The value (Double, units micrometer) is the lower limit on the distribution of diameters.
Required.

· “seed”: The value (Integer) seeds the random number generator before sampling fiber diameters.

– “mode”: The value (String) is the “FiberZMode” that tells the program how to seed fiber z-locations along
the length of the FEM model. Required.

As listed in Enums, implemented modes include
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∗ “EXTRUSION”: Creates straight fibers along the length of the model by extruding the xy- fiber loca-
tions defined by “FiberXYMode”.

∗ “EXPLICIT”: Creates curved fibers within a 2D extrusion model by importing explicit 3D fiber
coordinates from a file. When this mode is used, "FiberXYMode" must be "EXPLICIT_3D".

· “fiber_z_shift": The value (Integer) specifies the longitudinal shift of the fiber coordinates
from the model’s center. This is shift is only applicable if the fibers are shorter than the model
and are being extruded; the fiber_z_shift must be equal to or less than the extrusion length, such
that all user-provided fiber coordinates remain within the model length. (optional)

– “min”: the value (Double or List[Double], units: micrometer) is the distal extent of the seeded fiber along
the length of the nerve closer to z = 0. Optional: if min and max are not both provided then the fiber length
is assumed to be the proximal medium length (see model.json).

– “max”: The value (Double or List[Double] , units: micrometer) is the distal extent of the seeded fiber along
the length of the nerve closer to z = length of the proximal medium (as defined in model.json, the length
of the nerve). Optional: if min and max are not both provided then the fiber length is assumed to be the
proximal medium length by default.

– full_nerve_length: (Boolean) Optional. If true, suppresses the warning message associated with using
the full length nerve when "min" and "max" are not defined. Must be false or not defined if "min" and
"max" are defined.

– “offset”: The value (Double or String) is the fraction of the node-node length (myelinated fibers) or
segment length (unmyelinated fibers) that the center coordinate of the fiber is shifted along the z-axis from
the longitudinal center of the proximal medium. If the value is “random”, the offset will be randomly
selected between +/- 0.5 section/segment length; to avoid the randomized longitudinal placement, set the
offset value to ‘0’ for no offset.

– “absolute_offset”: The value (Double) is the distance (micrometers) that the center coordinate of the
fiber is shifted along the z-axis from the longitudinal center of the proximal medium. This value is additive
with "offset". The shift is with respect to the model center. If a negative value is passed, the fiber will
be shifted in the -z direction. Any offset from this parameter is cumulative with that from "offset".

– “seed”: The value (Integer) seeds the random number generator before any random offsets are created.
Required only if “offset” is not defined, in which case the program will use a random offset.

• “xy_parameters”: The value is a JSON Object containing key-value pairs to instruct the system in seeding
fiber locations at which to sample potentials inside fascicle inners in the nerve cross-section (Fig 3B). Include
only one version of this block in your sim.json file. Required.

“mode”: The value (String) is the “FiberXYMode” that tells the program how to seed fiber locations inside each
fascicle inner in the nerve cross-section. Required.

• As listed in Enums, known modes include

– “CENTROID”: Place one fiber at the centroid (i.e., from the best-fit ellipse of the inner) of each inner.

∗ No parameters required.

– “UNIFORM_COUNT”: Randomly place the same number of fibers in each inner, regardless of inner’s size.

∗ “count”: The value (Integer) is the number of fibers per inner. Required.

∗ “seed”: The value (Integer) is the seed for the random number generator that is instantiated before
the point picking algorithm for fiber (x,y)-coordinates starts. Required.

– “WHEEL”: Place fibers in each inner following a pattern of radial spokes out from the geometric centroid.

∗ “spoke_count”: The value (Integer) is the number of radial spokes. Required.
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∗ “point_count_per_spoke”: The value (Integer) is the number of fibers to place on each spoke
out from the centroid (i.e., excluding the centroid). Required.

∗ “find_centroid”: The value (Boolean), if true, tells the program to include the geometric centroid
as a fiber coordinate. Required.

∗ “angle_offset”: The value (Double, either degrees or radians depending on next parameter,
“angle_offset_is_in_degrees”) sets the direction of the first spoke in the wheel. The rest
of the spokes are equally spaced (radially) based on the “spoke_count”. Required.

∗ “angle_offset_is_in_degrees”: The value (Boolean), if true, tells the program to interpret
“angle_offset” as degrees. If false, the program interprets “angle_offset” in radians. Re-
quired.

– “EXPLICIT”: The mode looks for a “<explicit_index>.txt” file in the user-created direc-
tory (input/<input sample name>/explicit_fibersets, where <input sample name> is the
sample parameter in Sample) for user-specified fiber (x,y)-coordinates (see config/templates/
explicit.txt). Note, this file is only required if the user is using the “EXPLICIT” “FiberXYMode”.
An error is thrown if any explicitly defined coordinates are not inside any fascicle inner boundaries.

∗ “explicit_fiberset_index”: The value (Integer) indicates which explicit index file to use.

– “EXPLICIT_3D”: The mode looks for a “<explicit_index>.npy” file in the user-created direc-
tory (input/<input sample name>/explicit_fibersets, where <input sample name> is the
sample parameter in Sample) for user-specified fiber (x,y,z)-coordinates in microns (see config/
templates/explicit_3D.npy). Note, this file is only required if the user is using the “EXPLICIT_3D”
“FiberXYMode”. The explicit coordinates data structure in the pickled .npy file must be a numpy array
of fibers, where each index contains a 2D np.array of fiber xyz-points (e.g., np.array(np.array(fiber 1 xyz-
coords), . . . , np.array(fiber N xyz-coords)). The lengths fibers may be differ. An error is thrown if any
explicitly defined coordinates are not inside any fascicle inner boundaries. If the fibers are shorter than the
length of the model, the whole population of the provided fiber coordinates is centered longitudinally by
default, and each fiber is individually extruded to the length of the model.

To visualize the explicit_3D.npy template, open a command-line window and change directories to
config/templates/. Enter python to start an interactive python session and enter import numpy
as np. Then run the np.load('explicit_3D.npy', allow_pickle=True) to load and print the file
contents to the consol. The template file contains two short fibers of varying lengths, and is compatible
with the ascent tutorial.

To generate a 3D coordinate file: Create a python list of fibers, where each index is a 2D np.array of xyz
values. To save a python list of np.arrays of varying lengths to a .npy file, use np.save('<file name>.
npy', np.array(<list of fiber arrays>, dtype=object), allow_pickle=True).

∗ “explicit_fiberset_index”: The value (Integer) indicates which explicit index file to use.

– “UNIFORM_DENSITY”: Place fibers randomly in each inner to achieve a consistent number of fibers per
unit area.

∗ “top_down”: The value (Boolean) dictates how the pipeline determines how many fibers to seed in
each inner. Required.

· If “top_down” is true, the program determines the number of fibers per inner with the
“target_density”. If the number of fibers in an inner is less than the “minimum_number”,
then the minimum number is used.

· “target_density”: The value (Double) is the density (fibers/µm2). Required only if
“top_down” is true.

· “minimum_number”: The value (Integer) is the minimum number of fibers that the program
will place in an inner. Required only if “top_down” is true.
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· If “top_down” is false (i.e., bottom-up), the program determines the number of fibers per
unit area (i.e., fiber density) with “target_number” and the area of the smallest inner. If the
number of fibers in an inner is more than the “maximum_number”, then the maximum number
is used.

· “target_number”: The value (Integer) is the number of fibers placed in the smallest inner.
Required only if “top_down” is false.

· “maximum_number”: The value (Integer) is the maximum number of fibers placed in the
largest inner. Required only if “top_down” is false.

∗ “seed”: The value (Integer) is the seed for the random number generator that is instantiated before
the point picking algorithm for fiber (x,y)-coordinates starts. Required.

“waveform”: The waveform JSON Object contains key-value pairs to instruct the system in setting global time dis-
cretization settings and stimulation waveform parameters (Fig 3C). Required.

• “global”: the value (JSON Object) contains key-value pairs that define NEURON time discretization parame-
ters. Required.

– “dt”: The value (Double, units: milliseconds) is the time step used in the NEURON simulation for fiber
response to electrical stimulation. Required.

– “on”: The value (Double, units: milliseconds) is the time when the extracellular stimulation is turned on.
Required.

– “off”: The value (Double, units: milliseconds) is the time when the extracellular stimulation is turned
off. Required.

– “stop”: The value (Double, units: milliseconds) is the time when the simulation stops. Required.

The user must also provide one of the following JSON Objects containing “WaveformMode”-specific parameters. The
user can only loop parameters for one type of waveform in a Sim.

Note: The “digits” parameter for the following “WaveformModes” sets the precision of the unscaled current am-
plitude. For waveforms that are only ever +/-1 and 0 (e.g., MONOPHASIC_PULSE_TRAIN, BIPHASIC_FULL_DUTY,
BIPHASIC_PULSE_TRAIN), the user can represent the waveform faithfully with 1 digit of precision. However, for
waveforms that assume intermediate values (e.g., SINUSOID, BIPHASIC_PULSE_TRAIN_Q_BALANCED_UNEVEN_PW,
EXPLICIT) more digits of precision may be required to achieve numerical accuracy. An excessive number of digits of
precision will increase computational load and waste storage resources.

Note: If one of the parameter values in the “WaveformMode” JSON Object is a list, then there are n_sim/ folders
created for as many waveforms as parameter values in the list. If more than one parameter value is a list, then there are
n_sim/ folders created for each combination of waveform parameters among the lists (i.e., the Cartesian product).

• “MONOPHASIC_PULSE_TRAIN”

– “pulse_width”: The value (Double, or List[Double], units: milliseconds) is the duration (“width”) of
the monophasic rectangular pulse. Required.

– “pulse_repetition_freq”: The value (Double, or List[Double], units: Hz) is the rate at which indi-
vidual pulses are delivered. Required.

– “digits”: The value (Integer) is the number of digits of precision used in saving the waveform to file.
Required.

• “SINUSOID”
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– “pulse_repetition_freq”: The value (Double, or List[Double], units: Hz) is the frequency of the
sinusoid. Required.

– “digits”: The value (Integer) is the number of digits of precision used in saving the waveform to file.
Required.

• “BIPHASIC_FULL_DUTY”: This waveform consists of biphasic symmetric rectangular pulses, where there
is no “off” time between repetitions of the biphasic pulse, hence the “full duty cycle” designation. Thus,
the phase width (i.e., the duration of one phase in the symmetric pulse) is equal to half of the pe-
riod, as defined by the specified “pulse_repetition_freq”. This waveform is a special case of
“BIPHASIC_PULSE_TRAIN_Q_BALANCED_UNEVEN_PW” (below).

– “pulse_repetition_freq”: The value (Double, or List[Double], units: Hz) is the rate at which indi-
vidual pulses are delivered. Required.

– “digits”: The value (Integer) is the number of digits of precision used in saving the waveform to file.
Required.

• “BIPHASIC_PULSE_TRAIN”: This waveform consists of biphasic symmetric rectangular pulses, where the phase
width (i.e., the duration of one phase of the symmetric pulse) is defined by “pulse_width” and the two phases
of the biphasic symmetric pulses may be spaced by a gap defined by “inter_phase”. This waveform is a special
case of “BIPHASIC_PULSE_TRAIN_Q_BALANCED_UNEVEN_PW” (below).

– “pulse_width”: The value (Double, or List[Double], units: milliseconds) is the duration (“width”) of
one phase in the biphasic rectangular pulse. Required.

– “inter_phase”: The value (Double, or List[Double], units: milliseconds) is the duration of time between
the first and second phases in the biphasic rectangular pulse. Required.

– “pulse_repetition_freq”: The value (Double, or List[Double], units: Hz) is the rate at which indi-
vidual pulses are delivered. Required.

– “digits”: the value (Integer) is the number of digits of precision used in saving the waveform to file.
Required.

• “BIPHASIC_PULSE_TRAIN_Q_BALANCED_UNEVEN_PW”: This waveform consists of biphasic rectangular pulses
that are charged-balanced (i.e., the charge of the first phase is equal to the charge of the second phase),
but can be defined to be asymmetrical, such that the two phases can have different durations, as defined by
“pulse_width_1” and “pulse_width_2”. Further, the two phases of the biphasic pulses may be spaced by a
gap defined by “inter_phase”.

– “pulse_width_1”: The value (Double, or List[Double], units: milliseconds) is the duration (“width”) of
the first phase (positive amplitude) in the biphasic rectangular pulse. Required.

– “pulse_width_2”: The value (Double, or List[Double], units: milliseconds) is the duration (“width”) of
the second phase (negative amplitude) in the biphasic rectangular pulse. Required.

– “inter_phase”: The value (Double, or List[Double], units: milliseconds) is the duration of time between
the primary and secondary phases in the biphasic rectangular pulse (amplitude is 0). Required.

– “pulse_repetition_freq”: The value (Double, or List[Double], units: Hz) is the rate at which indi-
vidual pulses are delivered. Required.

– “digits”: The value (Integer) is the number of digits of precision used in saving the waveform to file.
Required.

• “EXPLICIT”

– “index”: The value (Integer) is the index of the explicit user-provided waveform stored in config/
user/waveforms/<waveform index>.dat with the time step on the first line followed by the current
amplitude value (unscaled, maximum amplitude +/- 1) at each time step on subsequent lines. Required.
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– “dt_atol”: The value (Double, units: milliseconds) is the tolerance allowed between the time step defined
in the explicit waveform file and the timestep used in the NEURON simulations (see “global” above). If the
difference in time step is larger than “dt_atol”, the user’s explicit waveform is interpolated and resampled
at the “global” timestep used in NEURON using SciPy’s Signal Processing package (scipy.signal) [2].
Required.

– “period_repeats”: The number of times (Integer) the input signal is repeated between when the stimu-
lation turns “on” and “off”. The signal is padded with zeros between simulation start (i.e., t=0) and “on”,
as well as between “off” and “end”. Additionally, the signal is padded with zeros between “on” and “off”
to accommodate for any extra time after the number of period repeats and before “off”. Required.

“intracellular_stim”: The value (JSON Object) contains key-value pairs to define the settings of the monophasic
pulse train of the intracellular stimulus (NEURON Scripts). Required.

• “times”: The key-value pairs define the time durations characteristic of the intracellular stimulation. Required.

– “pw”: The value (Double, units: milliseconds) defines the pulse duration of the intracellular stimulation.
Required.

– “IntraStim_PulseTrain_delay”: The value (Double, units: milliseconds) defines the delay from the
start of the simulation (i.e., t=0) to the onset of the intracellular stimulation. Required.

– “IntraStim_PulseTrain_dur”: The value (Double, units: milliseconds) defines the duration from the
start of the simulation (i.e., t=0) to the end of the intracellular stimulation. Required.

• “pulse_repetition_freq”: The value (Double, units: Hz) defines the intracellular stimulation frequency.
Required.

• “amp”: The value (Double, units: nA) defines the intracellular stimulation amplitude. Required.

• “ind”: The value (Integer) defines the section index (unmyelinated) or node of Ranvier number (myelinated)
receiving the intracellular stimulation. The number of sections/nodes of Ranvier is indexed from 0 and starts at
the end of the fiber closest to z = 0. Required.

“saving”: The value (JSON Object) contains key-value pairs to define which state variables NEURON will save
during its simulations and at which times/locations (NEURON Scripts). Required.

• “aploctime”: The value (Boolean), if true, instructs the program to save, for each fiber node, the last time that
an action potential (defined by the threshold value in your protocol) passed over that node. Times are written in
milliseconds from node 0 to node n (the last node). Note that passive end nodes will always have a time of 0 (no
action potential detected.)

• “space”:

– “vm”: The value (Boolean), if true, tells the program to save the transmembrane potential at all segments
(unmyelinated) and sections (myelinated) at the time stamps defined in “times” (see below). Required.

– “gating”: The value (Boolean), if true, tells the program to save channel gating parameters at all segments
(unmyelinated) and sections (myelinated) at the time values defined in “times” (see below). Note: Only
implemented for MRG fibers. Required.

– “times”: The value (List[Double], units: milliseconds) contains the times in the simulation at which
to save the values of the state variables (i.e., “gating” or “vm”) that the user has selected to save for all
segments (unmyelinated) and sections (myelinated). Required.

• “time”:

– “vm”: The value (Boolean), if true, tells the program to save the transmembrane potential at each time step
at the locations defined in “locs” (see below). Required.

– “gating”: The value (Boolean), if true, tells the program to save the channel gating parameters at each
time step at the locations defined in “locs” (see below). Note: Only implemented for MRG fibers. Required.
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– “istim”: The value (Boolean), if true, tells the program to save the applied intracellular stimulation at
each time step. Required.

– “locs”: The value (List[Double] or String, units: none) contains the locations (defined as a decimal
percentage, e.g., 0.1 = 10% along fiber length) at which to save the values of the state variables that the
user has selected to save for all timesteps. Alternatively, the user can use the value “all” (String) to prompt
the program to save the state variables at all segments (unmyelinated) and sections (myelinated). Required.

• “end_ap_times”:

– “loc_min”: The value (Double) tells the program at which location to save times at which Vm passes the
threshold voltage (defined below) with a positive slope. The value must be between 0 and 1, and less than
the value for “loc_max”. Be certain not to record from the end section (i.e., 0) if it is passive. A value 0
corresponds to z=0, and a value of 1 corresponds to z=length of proximal domain. Required if this JSON
object (which is optional) is included.

– “loc_max”: The value (Double) tells the program at which location to save times at which Vm passes the
threshold voltage (defined below) with a positive slope. The value must be between 0 and 1, and greater
than the value for “loc_min”. Be certain not to record from the end section (i.e., 1) if it is passive. A
value 0 corresponds to z=0, and a value of 1 corresponds to z=length of proximal domain. Required if this
JSON object (which is optional) is included.

– “threshold”: The value (Double, units: mV) is the threshold value for Vm to pass for an action potential
to be detected. Required if this JSON object (which is optional) is included.

• “runtimes”: The value (Boolean), if true, tells the program to save the NEURON runtime for either the finite
amplitude or bisection search for threshold simulation. If this key-value pair is omitted, the default behavior is
False.

• "3D_fiber_intermediate_data": The value (Boolean), if true, tells the program to save the fiber lengths and
longitudinal coordinate compartment spacings for sampled potentials into directories within the sample called
tracto_lengths/, tracto_coords/, 3D_tracto_fiberset/ respectively.

• “cap_recording”:

– “Imembrane_matrix”: The value (Boolean), if true, tells the program to save the transmembrane current
matrix for each fiber. These are memory-intensive matrices that contain the transmembrane currents for
all fiber compartments across all time points. The matrices are required if the user aims to later gener-
ate current templates using the examples\analysis\generate_templates.py script. Default: False.
Optional.

“protocol”:

• “mode”: The value (String) is the “NeuronRunMode” that tells the program to run activation thresholds, block
thresholds, or a list of extracellular stimulation amplitudes (NEURON Scripts). Required.

– As listed in Enums (Enums), known “NeuronRunModes” include

∗ “ACTIVATION_THRESHOLDS”

∗ “BLOCK_THRESHOLDS”

∗ “FINITE_AMPLITUDES”

• “initSS”: The value (Double, hint: should be negative or zero, units: milliseconds) is the time allowed for the
system to reach steady state before starting the simulation proper. Required.

• “dt_initSS”: The value (Double, units: milliseconds) is the time step (usually larger than “dt” in “global”
JSON Object (see above)) used to reach steady state in the NEURON simulations before starting the simulation
proper. Required.

• “amplitudes”: The value (List[Double], units: mA) contains extracellular current amplitudes to simulate.
Required if running “FINITE_AMPLITUDES” for “NeuronRunMode”.
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• “threshold”: The JSON Object contains key-value pairs to define what constitutes threshold being achieved.
Required for threshold finding protocols (i.e., “ACTIVATION_THRESHOLDS” and “BLOCK_THRESHOLDS”) only.
Optional for "FINITE_AMPLITUDES" protocol. (In this case, defines the threshold for checking if an amplitude
activates the fiber being simulated.)

– “value”: The value (Double, units: mV) is the transmembrane potential that must be crossed with a rising
edge for the NEURON code to count an action potential. Required for threshold finding protocols (i.e.,
“ACTIVATION_THRESHOLDS” and “BLOCK_THRESHOLDS”) only. Optional for "FINITE_AMPLITUDES"
protocol.

– “ap_detect_location”: The value (Double) is the location (range 0 to 1, i.e., 0.9 is 90% of the
fiber length in the +z-direction) where action potentials are detected for threshold finding protocols (i.e.,
“ACTIVATION_THRESHOLDS” or “BLOCK_THRESHOLDS”). Note: If using fiber models with passive end
nodes, the user should not try to detect action potentials at either end of the fiber. Required for thresh-
old finding protocols (i.e., “ACTIVATION_THRESHOLDS” and “BLOCK_THRESHOLDS”) only. Optional for
"FINITE_AMPLITUDES" protocol.

• “bounds_search”: the value (JSON Object) contains key-value pairs to define how to search for upper and
lower bounds in bisection search algorithms (Simulation Protocols). Required for threshold finding protocols
(i.e., “ACTIVATION_THRESHOLDS” and “BLOCK_THRESHOLDS”).

– “mode”: the value (String) is the “SearchAmplitudeIncrementMode” that tells the program how to
change the initial upper and lower bounds for the bisection search; the bounds are adjusted iteratively until
the initial upper bound (i.e., “top”) activates/blocks and until the initial lower bound does not activate/block,
before starting the bisection search (Simulation Protocols). Required.

∗ As listed in Enums (Enums), known “SearchAmplitudeIncrementModes” include:

· “ABSOLUTE_INCREMENT”: If the current upper bound does not activate/block, increase the
upper bound by a fixed “step” amount (e.g., 0.001 mA). If the lower bound activates/blocks,
decrease the lower bound by a fixed “step” amount (e.g., 0.001 mA).

· “PERCENT_INCREMENT”: If the upper bound does not activate/block, increase the upper
bound by a “step” percentage (e.g., 10 for 10%). If the lower bound activates/blocks, decrease
the lower bound by a “step” percentage (e.g., 10 for 10%).

– “top”: The value (Double, units: mA) is the upper-bound stimulation amplitude first tested in a bisection
search for thresholds. Required.

– “bottom”: The value (Double, units: mA) is the lower-bound stimulation amplitude first tested in a bi-
section search for thresholds. Required.

– “step”: The value (Double, units: mA) is the incremental increase/decrease of the upper/lower bound in
the bisection search. Required.

∗ If “ABSOLUTE_INCREMENT”, the value (Double, unit: mA) is an increment in milliamps.

∗ If “PERCENT_INCREMENT”, the value (Double, units: %) is a percentage (e.g., 10 is 10%).

– "max_steps": The value (Integer) is the number iterations that will be used in search of a threshold. If
the program does not find search bounds which encapsulate threshold (i.e., one bound activates and the
other does not) within this number of iterations, the search protocol will exit.

– “scout”: The value (JSONObject) is a set of key-value pairs specifying a previously run “scout” Sim
for the same Sample. Use this feature to reduce CPU time required for many fibers placed in the same
inner for a new Sim or Model. If this key is present, ASCENT will look for thresholds in n_sim folders
in your ASCENT_NSIM_EXPORT_PATH (i.e., the path you set in config/system/env.json) for fiber0 of
each inner for each n_sim. The program will load this threshold value and use it as a starting point for the
threshold bounds for each inner in your new Sim. The upper- and lower-bounds in the bisection search will
be “bounds_search” -> “step” % higher and lower, respectively, of the scout Sim’s fiber0 threshold. All
parameters except fiber location (i.e., “fibers” -> “xy_location” in Sim) must match between the scout Sim
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and the current Sim, since the n_sim indices must match between the scout Sim and current Sim. If this
key (“scout”) is present, the program will ignore the threshold bounds “top” and “bottom” in “protocol”
-> “bounds_search” (Unless the specified scout Sim is not found, in which case “top” and “bottom” will
be used). Optional.

∗ "model": The value (Integer) indicates which model index to use for the scout Sim. Required if
"scout" is used.

∗ "sim": The value (Integer) indicates which sim index to use fo the scout Sim (can be the current
Sim’s index). Required if "scout" is used.

• “termination_criteria”: Required for threshold finding protocols (i.e., “ACTIVATION_THRESHOLDS” and
“BLOCK_THRESHOLDS”) (Simulation Protocols).

– “mode”: The value (String) is the “TerminationCriteriaMode” that tells the program when the upper
and lower bound have converged on a solution of appropriate precision. Required.

∗ As listed in Enums (Enums), known “TerminationCriteriaModes” include:

· “ABSOLUTE_DIFFERENCE”: If the upper bound and lower bound in the bisection search are
within a fixed “tolerance” amount (e.g., 0.001 mA), the upper bound value is threshold.

· “tolerance”: The value (Double) is the absolute difference between upper and lower bound
in the bisection search for finding threshold (unit: mA). Required.

· “PERCENT_DIFFERENCE”: If the upper bound and lower bound in the bisection search are
within a relative “percent” amount (e.g., 1%), the upper bound value is threshold. This mode
is generally recommended as the ABSOLUTE_DIFFERENCE approach requires adjustment of
the “tolerance” to be suitable for different threshold magnitudes.

· “percent”: The value (Double) is the percent difference between upper and lower bound in
the bisection search for finding threshold (e.g., 1 is 1%). Required.

“supersampled_bases”: Optional. Required only for either generating or reusing super-sampled bases. This can be
a memory efficient process by eliminating the need for long-term storage of the bases/ COMSOL *.mph files. Control
of “supersampled_bases” belongs in Sim because the (x,y)-fiber locations in the nerve are determined by Sim. The
potentials are sampled densely along the length of the nerve at (x,y)-fiber locations once so that in a future pipeline run
different fiber types can be simulated at the same location in the nerve cross-section without loading COMSOL files
into memory.

• “generate”: The value (Boolean) indicates if the program will create super-sampled fiber coordinates and
super-sampled bases (i.e., sampled potentials from COMSOL). Required only if generating ss_bases/.

• “use”: The value (Boolean) if true directs the program to interpolate the super-sampled bases to create the
extracellular potential inputs for NEURON. If false, the program will sample along the length of the COMSOL
FEM at the coordinates explicitly required by “fibers”. Required only if generating ss_bases/.

• “dz”: The value (Double, units: micrometer) is the spatial sampling of the super-sampled bases. Required only
if generating ss_bases/.

• “source_sim”: The value (Integer) is the Sim index that contains the super-sampled bases. If the user sets both
“generate” and “use” to true, then the user should indicate the index of the current Sim here. Required only if
generating ss_bases/.

• "termination_criteria": Required for threshold finding protocols (i.e., "ACTIVATION_THRESHOLDS" and
"BLOCK_THRESHOLDS") (Simulation Protocols).

– "mode": The value (String) is the "TerminationCriteriaMode" that tells the program when the upper
and lower bound have converged on a solution of appropriate precision. Required.

∗ As listed in Enums (Enums), known "TerminationCriteriaModes" include:
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· "ABSOLUTE_DIFFERENCE": If the upper bound and lower bound in the bisection search are
within a fixed “tolerance” amount (e.g., 0.001 mA), the upper bound value is threshold.

· "tolerance": The value (Double) is the absolute difference between upper and lower bound
in the bisection search for finding threshold (unit: mA). Required.

· "PERCENT_DIFFERENCE": If the upper bound and lower bound in the bisection search are
within a relative “percent” amount (e.g., 1%), the upper bound value is threshold. This mode
is generally recommended as the ABSOLUTE_DIFFERENCE approach requires adjustment of
the “tolerance” to be suitable for different threshold magnitudes.

· "percent": The value (Double) is the percent difference between upper and lower bound in
the bisection search for finding threshold (e.g., 1 is 1%). Required.

"supersampled_bases": Optional. Required only for either generating or reusing super-sampled bases. This can be
a memory efficient process by eliminating the need for long-term storage of the bases/ COMSOL *.mph files. Control
of "supersampled_bases" belongs in Sim because the (x,y)-fiber locations in the nerve are determined by Sim. The
potentials are sampled densely along the length of the nerve at (x,y)-fiber locations once so that in a future pipeline run
different fiber types can be simulated at the same location in the nerve cross-section without loading COMSOL files
into memory.

• "generate": The value (Boolean) indicates if the program will create super-sampled fiber coordinates and
super-sampled bases (i.e., sampled potentials from COMSOL). Required only if generating ss_bases/.

• "use": The value (Boolean) if true directs the program to interpolate the super-sampled bases to create the
extracellular potential inputs for NEURON. If false, the program will sample along the length of the COMSOL
FEM at the coordinates explicitly required by “fibers”. Required only if generating ss_bases/.

• "dz": The value (Double, units: micrometer) is the spatial sampling of the super-sampled bases. Required only
if generating ss_bases/.

• "source_sim": The value (Integer) is the Sim index that contains the super-sampled bases. If the user sets both
“generate” and “use” to true, then the user should indicate the index of the current Sim here. Required only if
generating ss_bases/.

Example

{
"pseudonym": "template sim",
"n_dimensions": 1,
"active_srcs": {
"CorTec300.json": [[1, -1]],
"default": [[1, -1]]

},
"fibers": {
"mode": "MRG_DISCRETE",
"xy_trace_buffer": 5.0,
"z_parameters": {
"mode": "EXTRUSION",
"diameter": [1, 2, 5.7, 7.3, 8.7, 10],
"min": 0,
"max": 12500,
"offset": 0,
"seed": 123

},
"xy_parameters": {

(continues on next page)
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(continued from previous page)

"mode": "UNIFORM_DENSITY",
"top_down": true,
"minimum_number": 1,
"target_density": 0.0005,
"maximum_number": 100,
"target_number": 50,
"seed": 123

}
},
"waveform": {
"global": {
"dt": 0.001,
"on": 1,
"off": 49,
"stop": 50

},
"BIPHASIC_PULSE_TRAIN": {
"pulse_width": 0.1,
"inter_phase": 0,
"pulse_repetition_freq": 1,
"digits": 1

}
},
"intracellular_stim": {
"times": {
"pw": 0,
"IntraStim_PulseTrain_delay": 0,
"IntraStim_PulseTrain_dur": 0

},
"pulse_repetition_freq": 0,
"amp": 0,
"ind": 2

},
"saving": {
"space": {
"vm": false,
"gating": false,
"times": [0]

},
"time": {
"vm": false,
"gating": false,
"istim": false,
"locs": [0]

},
"end_ap_times": {
"loc_min": 0.1,
"loc_max": 0.9,
"threshold": -30

},
"runtimes": false,
"aploctime": false

(continues on next page)
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(continued from previous page)

},
"protocol": {
"mode": "ACTIVATION_THRESHOLD",
"initSS": -200,
"dt_initSS": 10,
"threshold": {
"value": -30,
"n_min_aps": 1,
"ap_detect_location": 0.9

},
"bounds_search": {
"mode": "PERCENT_INCREMENT",
"top": -1,
"bottom": -0.01,
"step": 50,
"scout_sim": false

},
"termination_criteria": {
"mode": "PERCENT_DIFFERENCE",
"percent": 1

}
},
"supersampled_bases": {
"generate": false,
"use": false,
"dz": 1.0,
"source_sim": 1009

}
}

3.2.5 Special Use Configuration Files

mock_sample.json

Named file: config/user/<mock_sample_index>.json
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Purpose

Instructs the pipeline on which user-defined parameters to use for synthesizing nerve sample morphology inputs (i.e.,
2D binary images of segmented nerve morphology) for a single sample in preparation for 3D representation of the
nerve in the FEM.

Syntax

To declare this entity in config/user/<mock_sample_index>.json, use the following syntax:

Note: Eccentricity (e) is defined as a function of the major (a-) and minor (b-) axes as follows:

{
"global": {
"NAME": String

},
"scalebar_length": Double,
"nerve": {
"a": Double,
"b": Double,
"rot": Double

},
"figure": {
"fig_margin": Double,
"fig_dpi": Integer

},

// EXAMPLE POPULATE Parameters for EXPLICIT
"populate": {
"mode": "EXPLICIT",
"min_fascicle_separation": 5,
"Fascicles": [
{
"centroid_x": Double,
"centroid_y": Double,
"a": Double,
"b": Double,
"rot": Double

},
...

]
},

// EXAMPLE POPULATE Parameters for TRUNCNORM
"populate": {
"mode": "TRUNCNORM",
"mu_fasc_diam": Double,
"std_fasc_diam": Double,
"n_std_diam_limit": Double,

(continues on next page)
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(continued from previous page)

"num_fascicle_attempt": Integer,
"num_fascicle_placed": Integer,
"mu_fasc_ecc": Double,
"std_fasc_ecc": Double,
"n_std_ecc_limit": Double,
"max_attempt_iter": Integer,
"min_fascicle_separation": Double,
"seed": Integer

},

// EXAMPLE POPULATE Parameters for UNIFORM
"populate": {
"mode": "UNIFORM",
"lower_fasc_diam": Double,
"upper_fasc_diam": Double,
"num_fascicle_attempt": Integer,
"num_fascicle_placed": Integer,
"lower_fasc_ecc": Double,
"upper_fasc_ecc": Double,
"max_attempt_iter": Integer,
"min_fascicle_separation": Double,
"seed": Integer

}
}

Properties

"global": The global JSON Object contains key-value pairs to document characteristics of the sample being synthe-
sized. Required.

• "NAME": The value (String) of this property sets the sample name/identifier (e.g., Pig1-1) to relate to bookkeep-
ing. The value will match the directory name in input/ containing the synthesized morphology files created by
the mock_morphology_generator.py. Required.

"scalebar_length": The value (Double, units: micrometer) is the desired length of the scale bar in the generated
binary image of the scale bar (s.tif). Required.

"nerve": The nerve JSON Object contains key-value pairs for the elliptical nerve’s size and rotation. Required.

• "a": Value is the nerve ellipse axis ‘a’ which is the full width major axis (Double, units: micrometer). Required.

• "b": Value is the nerve ellipse axis ‘b’ which is the full width minor axis (Double, units: micrometer). Required.

• "rot_nerve": Value is the nerve ellipse axis rotation (Double, units: degrees). Positive angles are counter-
clockwise and negative are clockwise, relative to orientation with a-axis aligned with +x-direction. Required.

“figure”: The figure JSON Object contains key-value pairs for parameters that determine the size and resolution of the
generated binary masks. Required.

• "fig_margin": The value (Double, >1 otherwise an error is thrown) sets the x- and y-limits of the binary masks
generated. The limits are set relative to the maximum nerve ellipse axis dimension (+/- fig_margin*max(a, b)
in both x- and y-directions). Required.

• "fig_dpi": The value (Integer) is the “dots per inch” resolution of the synthesized binary images. Higher
resolutions will result in more accurate interpolation curves of inners in COMSOL. We recommend >1000 for
this value. Required.
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"populate": The populate JSON Object contains key-value pairs for parameters that determine how the nerve contents
(i.e., fascicle inners) are populated. Required.

• "mode": The value (String) is the "PopulateMode" that tells the program which method to use to populate the
nerve. Required.

– As listed in Enums (Enums), known "PopulateModes" include

∗ "EXPLICIT": Populates the nerve with elliptical inners that are defined explicitly by the user.

· "min_fascicle_separation": The value (Double, units: micrometer) determines the min-
imum distance between fascicle boundaries in the binary mask image that the pipeline will
allow without throwing an error. This value controls the separation required between fas-
cicles in the binary mask only. There is a separate parameter for forcing a distance (post-
deformation) of the nerve between fascicles and between fascicles and the nerve boundary in
sample.json. Required.

· "Fascicles": The value List[JSON Object] contains a JSON Object for each inner. Re-
quired. Within each JSON Object, the following key-value pairs are present:

· "centroid_x": Value (Double, units: micrometer) is the x-coordinate of the centroid of the
best-fit ellipse of the Trace. Required.

· "centroid_y": Value (Double, units: micrometer) is the y-coordinate of the centroid of the
best-fit ellipse of the Trace. Required.

· "a": Value is the ellipse axis ‘a’ which is the full width major axis (Double, units: microme-
ter). Required.

· "b": Value is the ellipse axis ‘b’ which is the full width minor axis (Double, units: microm-
eter). Required.

· "rot": Value is the ellipse axis rotation (Double, units: degrees). Positive angles are counter-
clockwise and negative are clockwise, relative to orientation with a-axis aligned with +x-
direction. Required.

∗ "TRUNCNORM": Places fascicles in the nerve with size and eccentricity randomly based on a truncated
normal distribution. Rotation of fascicles is randomly drawn from uniform distribution from 0 to
360 degrees.

· "mu_fasc_diam": The value (Double, units: micrometer) is the mean fascicle diameter in
the distribution. Required.

· "std_fasc_diam": The value (Double, units: micrometer) is the standard deviation of fas-
cicle diameter in the distribution. Required.

· "n_std_diam_limit": The value (Double) is the limited number of standard deviations for
the truncated normal fascicle diameter distribution. The value does not need to be an integer.
Required.

· "num_fascicle_attempt": The value (Integer) is the number of different fascicles from
the distribution that the program will attempt to place. Required.

· If "num_fascicle_attempt" does not equal "num_fascicle_placed", a warning is
printed to the console instructing user to reduce the number, size, and/or separation of the
fascicles.

· "num_fascicle_placed": The value (Integer) is the number of successfully placed fascicles
in the nerve cross-section. Automatically populated.

· If "num_fascicle_attempt" does not equal "num_fascicle_placed", a warning is
printed to the console instructing user to reduce the number, size, and/or separation of the
fascicles.
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· "mu_fasc_ecc": The value (Double) is the mean fascicle eccentricity in the distribution.
Must be <= 1 and > 0. Set to 1 for circles. Required.

· "std_fasc_ecc": The value (Double, units: micrometer) is the standard deviation of fascicle
eccentricity in the distribution. Required.

· "n_std_ecc_limit": The value (Double) is the limited number of standard deviations for
the truncated normal fascicle eccentricity distribution. Required.

· "max_attempt_iter": The value (Integer) is the number of different random locations
within the nerve that the program will attempt to place a fascicle before skipping it (pre-
sumably because it cannot possibly fit in the nerve). We recommend using 100+. Required.

· "min_fascicle_separation": The value (Double, units: micrometer) determines the min-
imum distance between fascicle boundaries in the binary mask image that the pipeline will
allow without throwing an error. This value controls the separation required between fas-
cicles in the binary mask only. There is a separate parameter for forcing a distance (post-
deformation) of the nerve between fascicles and between fascicles and the nerve boundary in
sample.json. Required.

· "seed": The value (Integer) initiates the random number generator. Required.

∗ "UNIFORM": Places fascicles in the nerve with size and eccentricity randomly based on a uniform
distribution. Rotation of fascicles is randomly drawn from uniform distribution from 0 to 360 de-
grees.

· "lower_fasc_diam": The value (Double, units: micrometer) is the lower limit of the uni-
form distribution for fascicle diameter. Required.

· "upper_fasc_diam": The value (Double, units: micrometer) is the upper limit of the uni-
form distribution for fascicle diameter. Required.

· "num_fascicle_attempt": The value (Integer) is the number of different fascicles from
the distribution that the program will attempt to place. Required.

· If "num_fascicle_attempt" does not equal "num_fascicle_placed", a warning is
printed to the console instructing user to reduce the number, size, and/or separation of the
fascicles.

· "num_fascicle_placed": The value (Integer) is the number of successfully placed fascicles
in the nerve cross-section. Automatically populated.

· If "num_fascicle_attempt" does not equal "num_fascicle_placed", a warning is
printed to the console instructing user to reduce the number, size, and/or separation of the
fascicles.

· "lower_fasc_ecc": The value (Double) is the lower limit of the uniform distribution for
fascicle eccentricity. Must be <= 1 and > 0. Set to 1 for circles. Required.

· "upper_fasc_ecc": The value (Double) is the upper limit of the uniform distribution for
fascicle eccentricity. Must be <= 1 and > 0. Set to 1 for circles. Required.

· "max_attempt_iter": The value (Integer) is the number of different random locations
within the nerve that the program will attempt to place a fascicle before skipping it (pre-
sumably because it cannot possibly fit in the nerve). We recommend using 100+. Required.

· "min_fascicle_separation": The value (Double, units: micrometer) determines the min-
imum distance between fascicle boundaries in the binary mask image that the pipeline will
allow without throwing an error. This value controls the separation required between fas-
cicles in the binary mask only. There is a separate parameter for forcing a distance (post-
deformation) of the nerve between fascicles and between fascicles and the nerve boundary in
sample.json. Required.
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· "seed": The value (Integer) initiates the random number generator. Required.

Example

{
"global": {
"NAME": "Alien1-1"

},
"scalebar_length": 1000,
"nerve": {
"a": 3000,
"b": 2000,
"rot": 45

},
"figure": {
"fig_margin": 1.2,
"fig_dpi": 1000

},
"populate": {
"mode": "UNIFORM",
"lower_fasc_diam": 450,
"upper_fasc_diam": 500,
"num_fascicle_attempt": 10,
"num_fascicle_placed": 0,
"lower_fasc_ecc": 0.5,
"upper_fasc_ecc": 0.99,
"max_attempt_iter": 100,
"min_fascicle_separation": 10,
"seed": 123

}
}

query_criteria.json

Named file: config/user/query_criteria/<query criteria index>.json
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Purpose

Used to guide the Query class’s searching algorithm in the run() and _match() methods. This is used for pulling
Sample, Model, or Sim indices for data analysis. The query_criteria.json dictates if a given Sample, Model, or
Sim fit the user’s restricted parameter values (Python Morphology Classes).

Syntax

{
"partial_matches": Boolean,
"include_downstream": Boolean,
"sample": { // can be empty, null, or omitted
},
"model": { // can be empty, null, or omitted
},
"sim": { // can be empty, null, or omitted
},
"indices": {
"sample": null, Integer, or [Integer, ...],
"model": null, Integer, or [Integer, ...],
"sim": null, Integer, or [Integer, ...]

}
}

Properties

"partial_matches": The value (Boolean) indicates whether Query should return configuration indices for Sample,
Model, or Sim that are a partial match (i.e., a subset of the parameters were found, but not all).

"include_downstream": The value (Boolean) indicates whether Query should return indices of downstream (Sample
> Model > Sim) configurations that exist if match criteria are not provided for them.

"sample": The value is a JSON Object that mirrors the path to the parameters of interest in Sample and their value(s).

"model": The value is a JSON Object that mirrors the path to the parameters of interest in Model and their value(s).

"sim": The value is a JSON Object that mirrors the path to the parameters of interest in Sim and their value(s).

"indices":

• "sample": The value (null, Integer, or [Integer, . . . ]) for explicitly desired Sample indices

• "model": The value (null, Integer, or [Integer, . . . ]) for explicitly desired Model indices

• "sim": The value (null, Integer, or [Integer, . . . ]) for explicitly desired Sim indices

Note: You can have BOTH lists of desired Sample, Model, and Sim indices AND search criteria in one
query_criteria.json.
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Example

{
"partial_matches": true,
"include_downstream": true,
"sample": {
"sample": "Rat16-3"

},
"model": {
"medium": {
"bounds": {
"radius": [1000, 2000]

}
},
"dummy": 0

},
"sim": null,
"indices": {
"sample": null,
"model": null,
"sim": null

}
}

3.2.6 System Configuration Files

env.json

Named file: config/system/env.json

Purpose

The file contains key-value pairs for paths. The file can be automatically populated by running env_setup.py (Instal-
lation). Note that we have prepended all the keys in this file with “ASCENT” because these key-value pairs are directly
stored as environment variables, so the “ASCENT” key distinguishes these pairs from other paths that may be present
on your computer.

Syntax

To declare this entity in config/system/env.json, use the following syntax:

{
"ASCENT_COMSOL_PATH": String,
"ASCENT_JDK_PATH": String,
"ASCENT_PROJECT_PATH": String,
"ASCENT_NSIM_EXPORT_PATH": String,
"ASCENT_DATASET_EXPORT_PATH": String,

}
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Properties

"ASCENT_COMSOL_PATH": The value (String) is the path for your local COMSOL installation. "ASCENT_JDK_PATH":
The value (String) is the path for your local Java JDK installation. "ASCENT_PROJECT_PATH": The value (String) is
the path for your local ASCENT repository. "ASCENT_NSIM_EXPORT_PATH": The value (String) is the path where the
pipeline will save NEURON simulation directories to submit. "ASCENT_DATASET_EXPORT_PATH": The value (String)
is the path where the pipeline exports datasets using ASCENT’s dataset generating tool. (Optional)

Example

{
"ASCENT_COMSOL_PATH": "/Applications/COMSOL55/Multiphysics",
"ASCENT_JDK_PATH": "/Library/Java/JavaVirtualMachines/jdk1.8.0_221.jdk/Contents/Home/

→˓bin/",
"ASCENT_PROJECT_PATH": "/Users/ericmusselman/Documents/ascent",
"ASCENT_NSIM_EXPORT_PATH": "/Users/ericmusselman/Documents/ascent/submit",
"ASCENT_DATASET_EXPORT_PATH": "/Users/ericmusselman/Documents/ascent_data_shared"

}

{
"ASCENT_COMSOL_PATH": "C:\\Program Files\\COMSOL\\COMSOL54\\Multiphysics",
"ASCENT_JDK_PATH": "C:\\Program Files\\Java\\jdk1.8.0_221\\bin",
"ASCENT_PROJECT_PATH": "D:\\Documents\\ascent",
"ASCENT_NSIM_EXPORT_PATH": "D:\\Documents\\ascent\\submit",
"ASCENT_DATASET_EXPORT_PATH": "D:\\Documents\\ascent_data_shared"

}

materials.json

Named file: config/system/materials.json

Purpose

Stores default material and tissue properties in the pipeline for use in the 3D FEM.

Syntax

To declare this entity in config/system/materials.json, use the following syntax:

{
"conductivities": {
"endoneurium": { // example syntax for anisotropic medium
"value": "anisotropic",
"sigma_x": String,
"sigma_y": String,
"sigma_z": String,
"unit": "String",
"references": {

(continues on next page)
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(continued from previous page)

"1": String,
...,
"n": String

}
},
"epineurium": { // example syntax for isotropic medium
"value": "String",
"unit": "String",
"references": {
"1": String,
...,
"n": String

}
}

}
}

Properties

"<material>": The value is a JSON Object containing the conductivity value and units as Strings. Though using
strings may seem odd for storing conductivity values, we do this because we read them directly into COMSOL to
define materials, and COMSOL expects a string (which it evaluates as expression).

• "value": The conductivity of the material (if not “anisotropic”, the value must be in units S/m). If the value is
“anisotropic”, the system is expecting additional keys for the values in each Cartesian direction:

– "sigma_x": The value (String) is the conductivity in the x-direction (unit: S/m)

– "sigma_y": The value (String) is the conductivity in the y-direction (unit: S/m)

– "sigma_z": The value (String) is the conductivity in the z-direction (unit: S/m)

• "unit": The unit of the associated conductivity in square brackets (must be “[S/m]”)

• "references": The value (Dictionary) contains citations to the source of the material conductivity used. The
contents are non-functional (i.e., they are not used in any of the code), but they serve as a point of information
reference for good bookkeeping. Each reference used is assigned its own key-value pair (Optional).

Example

See: config/system/materials.json to see all built-in material definitions, which the user may add to.

Note: Perineurium can be represented in the pipeline as either a meshed domain with a finite thickness or as a
thin layer approximation, but the conductivity value used for either method is defined in materials.json unless the
"PerineuriumResistivityMode" is "MANUAL" and the conductivity is defined explicitly in Model (Perineurium
Properties).
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ci_peri_thickness.json

Named file: config/system/ci_peri_thickness.json

Purpose

The file stores "PerineuriumThicknessMode" definitions that are referenced in sample.json
("ci_perineurium_thickness") for assigning perineurium thickness values to fascicles for a mask of inners
if "ci_perineurium_thickness" is not specified as “MEASURED”. The calculated thickness may be explicitly
built in the FEM geometry and meshed (i.e., if "use_ci" in Model is false) or may only be used for calculating
the contact impedance if modeling the perineurium with a thin layer approximation (Creating Nerve Morphology in
COMSOL, and Perineurium Properties).

Syntax

{
"ci_perineurium_thickness_parameters": {
"GRINBERG_2008": {
"a": Double,
"b": Double

},
...

}
}

Properties

"<PerineuriumThicknessMode>": JSON Object that contains key-value pairs defining the relationship between
fascicle diameter (micrometers) and perineurium thickness. Required.

• "a": Value (Double, units: µm/µm) as in thickness = a*x + b

• "b": Value (Double, units: µm) as in thickness = a*x + b

Example

See: config/system/ci_peri_thickness.json to see all built-in PerineuriumThicknessMode relationships.

mesh_dependent_model.json

Named file: config/system/mesh_dependent_model.json
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Purpose

This file is not to be changed unless a user adds new parameters to Model. The use of this file happens behind the
scenes. The file informs the ModelSearcher class (Java Utility Classes) if two model configurations constitute a
“mesh match” (i.e., that the mesh from a previously solved and identical model can be recycled). Note that if you
modify the structure of model.json, the pipeline expects this file’s structure to be changed as well. If the Boolean
for a parameter is true, then the parameter values between two Models must be identical to constitute a “mesh match”.
If the Boolean for a parameter is false, then the parameter values between the two Models can be different and still
constitute a “mesh match”. The process of identifying “mesh matches” is automated and is only performed if the
"recycle_meshes" parameter in Run is true.

Syntax

To declare this entity in config/system/mesh_dependent_model.json, use the following syntax:

• The same key-value structure pair as in Model, but the values are of type Boolean

– true: The parameter values between the two Model configurations must be identical to constitute a “mesh
match”.

– false: The parameter values between the two Model configurations can be different and still constitute a
“mesh match”.

Properties

See: model.json

Example

See: config/system/mesh_dependent_model.json

Note: The user should not need to change this file unless adding new parameters to Model for expanded/modified
pipeline functionality.
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CHAPTER

FOUR

PUBLISHING WITH ASCENT

4.1 Template for Reporting Methods in a Publication

For uses of ASCENT, either stand-alone in its publicly available form, as a starting point upon which further work
is developed, or as a component of a system (e.g., connected with other organ models or engineering optimization
techniques), we ask that the author(s) cite both the ASCENT publication and the release of ASCENT (e.g., ASCENT
v1.1.2). Make sure to use the correct DOI for the release used.

If you use ASCENT, ask for it to be added to our list of Publications Utilizing ASCENT by sending a message to the
user support email listed in the README.

The following guidelines are to help users adhere to FAIR principles when using ASCENT and thereby enable model
reproducibility and reduce duplication of efforts [Wilkinson et al., 2016]. With published modeling studies using
ASCENT, we ask that users provide all code and input files required to reproduce their work.

To streamline dissemination of work, upon acceptance of a manuscript to a journal, we encourage users to either
make their fork/branch of the ASCENT repository publicly available, or to make a “Pull Request” to the ASCENT
GitHub repository (i.e., if your developments would be of general interest to ASCENT users) so that we can review
and incorporate your changes to our public repository.

4.1.1 Configuration files

Provide the JSON configuration files used as inputs to ASCENT.

• sample.json

• model.json

• sim.json

• mock_sample.json (if applicable)

• map.json (if serial nerve sections are used to create 3D representation of the nerve in future ASCENT releases)

• ci_peri_thickness.json (if using new relationships between perineurium thickness and inner diameter not already
in the ASCENT repository)

• materials.json (if using new materials that have been added to this file and referenced in model.json rather than
explicitly defined in model.json)

• fiber_z.json (if using fiber models with ultrastructure that is not integrated in the ASCENT repository)
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4.1.2 Nerve segmentation files

Indicate the software and methods used to generate the binary image inputs (e.g., Adobe Photoshop).

If defining nerve geometry with segmented binary images of nerve microanatomy, indicate the methods for the tech-
nique used to obtain the nerve images (i.e., histology, Micro-CT, ultrasound, etc.) and to segment the tissue boundaries.

If referencing a dataset of published nerve microanatomy, cite the original source, include statements to justify the
relevance of the source to define nerve tissue boundaries for your model(s), and report high-level statements for the
methods used. Indicate the methods used to segment the tissue boundaries.

If using our mock_morphology_generator.py script, please indicate so, and make a statement regarding the methods
used to populate the nerve with fascicles. Present either your own data or cite previously published literature used to
inform the nerve diameter and the number, size, and placement of fascicle(s) in the nerve.

Explicitly indicate in your methods if you used any correction for tissue shrinkage in preparing nerve inputs for modeling
in the FEM. If so, cite literature justifying your assumption. Additionally, indicate any methods used to deform the
nerve to fit within the cuff electrode in ASCENT.

Provide the image files used as inputs to ASCENT.

• n.tif (if applicable)

• i.tif or o.tif, both i.tif and o.tif, or c.tif (as applicable)

• s.tif

• a.tif (if applicable)

4.1.3 Cuff

If the “preset” cuff configuration file used to define the cuff electrode is not publicly available in the ASCENT repository,
please provide it with your materials.

If new part primitives were created to represent the cuff electrode (Creating New Part Primitives), please include
copies of Java code that perform the FEM operations for the new parts. These sections of code should be from
src/model/Part.java as “cases” (i.e., in switch-case statement) for new parts in the createCuffPartPrimitive() and cre-
ateCuffPartInstance() methods.

Indicate how the cuff was placed on the nerve. Specifically, state the longitudinal placement of the cuff and how the cuff
rotation was determined (e.g., the cuff rotation modes, or used a.tif to rotate the cuff to replicate in vivo cuff rotation).

4.1.4 Materials

Cite the original source for each conductivity value used to define materials as indicated in materials.json and/or
model.json.

4.1.5 Domains

Report the model length and radius, along with a statement to justify your model’s dimensions (i.e., convergence
studies). Report the presence and dimensions of any cuff fill domains (e.g., saline, encapsulation, or mineral oil between
the nerve and the cuff electrode).
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4.1.6 Perineurium

Report if a thin-layer approximation or a finite thickness material was used to define the perineurium. If a thin-layer
approximation was used, indicate how the thickness of the perineurium was determined (e.g., measured from histology,
or previously published relationship between inner diameter and perineurium thickness).

4.1.7 Mesh

Indicate the method used to mesh the FEM in addition to the number of domain elements. Include a statement to justify
your model’s meshing parameters (i.e., convergence studies) (Convergence Analysis Example).

4.1.8 Solution

Indicate that the FEM was solved using Laplace’s equation once for each contact delivering 1 mA of current. Indicate
if the outer surfaces of the model were grounded or set to insulation.

4.1.9 HOC/MOD files

If using novel fiber model ultrastructure or channel mechanisms, please share the code required to implement it in
ASCENT.

4.1.10 Waveform

State the stimulation waveform shape, timestep, and simulation time used. Be certain that the timestep chosen is short
enough to simulate accurately fiber response to stimulation.

4.1.11 NEURON simulations

If computing thresholds of activation and/or block, state the search algorithm used (e.g., bisection search) and the exit
criteria (e.g., tolerance).

4.1.12 Analysis

State the methods and software tools used to analyze and present data.

4.2 Tool for Creating Dataset with ASCENT Data (SPARC’s Format)

The instructions below are for creating SPARC-style datasets for uploading ASCENT data to Pennsieve. We worked
with the SPARC Data Curation Team to find a dataset structure/format that is compliant with their standards that they
apply to all datasets. Follow each step below in order.
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4.2.1 1. Environment setup

Purpose: To add the “ASCENT_DATASET_EXPORT_PATH” to your env.json file, which is the directory on
your computer where the datasets will be saved if you use the process detailed on this page.

• Re-run env_setup (i.e., python run env_setup), OR

• Add "ASCENT_DATASET_EXPORT_PATH" to your config/system/env.json file manually.

• Example:

– Dataset export path: "D:\\\\Documents\\\\ascent_data_shared"

∗ \\\\ for Windows machines, OR

∗ / for Unix-based machines (i.e., Linux,MacOS)

4.2.2 2. Choose dataset index

Purpose: The number you choose for the “dataset_index” will be used to identify the dataset you are creating
now from all other datasets you have previously made or will make in the future. The dataset index you choose
is not of importance to anyone else, and is reflected nowhere in the dataset you publish. The dataset output will
be saved in a sub-directory named <dataset_index> (e.g., <ASCENT_DATASET_EXPORT_PATH>/0/ if you choose
the “dataset_index” to be 0)

• Choose dataset_index for your dataset (e.g., 0, 1, 2, 3, . . . )

• Use same dataset_index value for each of your datasets for all of the following steps

• You can do this process for multiple datasets in the same call of the script (i.e., <dataset_indices> in following
steps which is a space separated list, e.g., “0 1 2”), so do this for each dataset you wish to create.

4.2.3 3. Create query_criteria configuration file

Purpose: The contents of this JSON file control the scope of the data in your dataset from from the samples/
directory. In step 6 below you can selectively remove certain data for specific n_sims, but this query_criteria
configuration file should have all Sample(s), Model(s), and Sim(s) to span your entire dataset.

Template: config/templates/dataset/query_criteria.json

• Create new “query_criteria” JSON file:

– Path: <ASCENT_DATASET_EXPORT_PATH>/config/query_criteria/<dataset_index>.json

• Use indices/parameters broad enough to flag all data you wish to include in the dataset

• See template in: config/templates/dataset/query_criteria.json

4.2.4 4. “queried_indices_info”

**Purpose: The contents of this JSON file instruct the dataset generating tool to add additional details to the Excel file
produced in Step 5. By providing paths to parameters in Sample, Model, and Sim it will be clearer in Step 6 which
n_sims you wish to include or exclude from exporting.

Template: config/templates/dataset/queried_indices_info.json

• Create new “queried_indices_info” file:

– Path: <ASCENT_DATASET_EXPORT_PATH>/config/queried_indices_info/<dataset_index>.
json
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• Add paths to the parameters you would like included in your Excel summary of Query for your results.

• Within Sample, Model, Sim:

– Pass a list of lists with the path to your parameters of interests.

4.2.5 5. Run build_dataset (1st of 2 times)

Purpose: If this is the first time you are running the build_dataset.py script, which the program will identify
because the Excel file containing queried ASCENT indices to-be-modified in Step 6 does not exist, this step
creates an Excel output showing all data that matches your scope defined in the query_criteria.json file
from Step 3.

• Syntax: python run build_dataset <list of dataset_indices (e.g., 0 1 2)>

4.2.6 6. “Modify Excel file”

Purpose: The purpose of this step is to refine the scope of your dataset. For example, your chosen Sim might
contain data for fiber diameters, pulse widths etc. that you do not wish to include in your dataset. Now is your
chance to remove that data from the dataset.

• Modify Excel output file to govern what gets exported and how paths look in final product

• Excel output: <ASCENT_DATASET_EXPORT_PATH>/modify_me/<dataset_index>.xlsx

• Delete entries (entire rows) for Model(s)/Sim(s)/N-Sim(s) that you do not wish to include in dataset

• If you are going to be picky about the SPARC Sam+Sub SPARC indices assigned to your ASCENT Sample
Indices, Create Columns for “sam” and “sub” indices . . . only must do it once for each entry you are picky about.

– Note: there is automatic error-checking for conflicting pickiness.

– Note: the key for which ASCENT sample_index is paired to which SPARC sub-index/sam-index is au-
tomatically saved to: <ASCENT_DATASET_EXPORT_PATH>/datasets/<dataset_index>/metadata/
samples_sub_sam.json (note: they dictionary keys are the ASCENT sample indices)

• Save and close Excel file.

4.2.7 7. keeps

Purpose: The purpose of the “keeps” JSON file is to tell the program which specific files within the speceified
Samples/Models/Sims/N-Sims you wish to include in your final dataset. For example, you might not want to
include all files in samples/ for the ASCENT indices you chose.

Template: config/templates/dataset/keeps_ascent_export_files.json

• Create new keeps file <ASCENT_DATASET_EXPORT_PATH>/config/keeps/<dataset_index>.json

– The JSON structure mirrors the ASCENT file structure.

– Note: keys that represent “index”-named directories (i.e., model_index, sim_index, n_sim_index) are
named as such and wrapped with “<>”.

– Note: values are true if you wish to include the file.

– Note: values are false if you do NOT wish to include the file.

– Note: known output types (indicating there will be a list of files that match a particular regex) are wrapped
in <> and match the keys in config/system/regex_ascent_files.json.
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– Note: a key can stop at the level of a directory (i.e., not file), and the entire contents will be copies over if
true.

– Note: a key can stop at level of a directory (i.e., not file), and NO contents will be copies over if false.

• Note to developers: expand this template as necessary for new ASCENT intermediate files/outputs.

4.2.8 8. COMSOL clearing exceptions (optional)

Purpose: The purpose of the “comsol_clearing_exceptions” JSON file is to tell the program which COMSOL
files you wish to NOT clear the mesh/solution for in your dataset. It is important to only include meshes/solutions
unless it is absolutely necessary since these files are very large (often gigabytes worth of data!)

• Create “comsol_clearing_exceptions” file:

– <ASCENT_DATASET_EXPORT_PATH>/config/comsol_clearing_exceptions/<dataset_index>.
json

– See template in: config/system/dataset/comsol_clearing_exceptions.json

• This file contains the indices for the mesh.mph [sample, model] or <basis_index>.mph [sample, model, ba-
sis_index] that you DO NOT want cleared for either mesh (mesh.mph or <basis_index>.mph) or solution
(<basis_index>.mph ONLY).

• COMSOL clearing will only occur if any COMSOL files have been copied over, as controlled in the preceding
“keeps” step.

4.2.9 9. Run build_dataset (2nd of 2 times)

Purpose: This finally copies over the files and clears COMSOL files as instructed previously.

4.2.10 10. Create SODA dataset files

Use SODA to create dataset files (subjects.xlsx, samples.xlsx, dataset_description.xlsx, submission.
xlsx)

4.2.11 11. Add code relevant to your dataset

• Scripts belong in files/code/

• Most importantly, include your plotting code in files/code/plotting

• Contents of this folder are flexible, so this is a good place for config files specific to your dataset that are applicable
across the whole dataset or the plotting code.

• files/code/ascent_classes/ for classes that are specific to your dataset

• files/code/ascent_configs/ for config files that apply broadly to your dataset (preset cuffs in files/code/
ascent_configs/cuffs/, Sims in files/code/ascent_configs/sims/)

• files/code/ascent_metadata/ for conda/pip requirements, samples_sub_sam.json etc.

• files/code/plotting_configs/ for config files needed to run your plotting code

• Note: make use of files/code/ascent_metadata/samples_sub_sam.json to convert ASCENT to SPARC
indices in your code, and to relate them to any labels used in paper or elsewhere.

94 Chapter 4. Publishing with ASCENT



ASCENT, Release v1.3.1

4.2.12 12. Use SODA to upload your dataset to Pennsieve and create manifest files
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CHAPTER

FIVE

CREATING MOCK MORPHOLOGY

MockSample is a Python class that manages the data and contains all operations to create binary masks of mock nerve
morphology (i.e., nerve: n.tif, inners: i.tif, and scale bar: s.tif) to use as inputs to the pipeline.

The user defines the parameter values in config/user/mock_samples/<mock_sample_index>.json (with a tem-
plate provided in config/templates/mock_sample.json). The mock sample morphology is then created using
the JSON file by executing "python run mock_morphology_generator <mock_sample_index>" at the project
root. The mock morphology generator uses the MockSample Python class to create binary images of the nerve, inner
perineurium traces (fascicles), and the scale bar in input/<NAME>/ (NAME is analogous to the “sample” parameter in
Sample, following the standard naming convention (JSON Configuration Files)), which allow the pipeline to function
as if binary images of segmented histology were provided. The <mock_sample_index>.json file and the resulting
segmented nerve morphology files are automatically saved in input/<NAME>/.

MockSample is Configurable, and has instance attributes of “nerve” and a list “fascicles”. After the MockSample class
is initialized, a mock_sample.json file is added to the class instance. The mock_morphology_generator.py script
configures an instance of the MockSample class using the first input argument, which references the index of a JSON
file stored in config/user/mock_samples/.

In mock_morphology_generator.py, MockSample’s methods make_nerve() and make_fascicles() are called
to create ellipses for the nerve and fascicles in memory based on the parameters in the mock_sample.json file. Mock-
Sample’s methods ensure that the fascicles have a minimum distance between each fascicle boundary and the nerve
and between fascicle boundaries. For details on the parameters that define sample morphology using our mock nerve
morphology generator, see JSON Overview for a description of mock_sample.json and Mock Sample Parameters for
details of the syntax/data type of the key-value parameter pairs required to define a mock sample. Lastly, MockSample’s
make_masks() method is called on the class instance to create binary masks and save them as TIFs in the input/
<NAME>/ directory.
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CHAPTER

SIX

PART PRIMITIVES AND CUSTOM CUFFS

6.1 Library of part primitives for electrode contacts and cuffs

6.2 Creating custom preset cuffs from instances of part primitives

The operations by which cuffs are added to the COMSOL “model” object are contained in the Java Part class (src/
model/Part.java). A complete cuff design is defined by a JSON file (e.g., Purdue.json) stored in config/
system/cuffs/, which we call a “preset” cuff, containing parameterizations and material assignments for part prim-
itives that together represent an entire cuff electrode, including contact “recess” and “fill” (i.e., saline, mineral oil, or
encapsulation tissue). The contents of the “preset” JSON file direct the Part class on which part primitives to add as well
as their size, shape, placement, and material function (i.e., cuff “insulator”, contact “conductor”, contact “recess”, and
cuff “fill”). Fig 3A shows some examples of “preset” cuffs constructed from our library of COMSOL part primitives
which are included in the pipeline repository in config/system/cuffs/. Users should not modify existing “preset”
cuff files. Rather, a user should use our “preset” cuffs as a guide in constructing their own custom cuffs, which require
a unique file name. Once a cuff is defined as a “preset” in config/system/cuffs/ as its own JSON file, the user may
choose to place the cuff on a nerve in COMSOL using the “preset” parameter in Model (Model Parameters).

We provide a COMSOL file in examples/parts/sandbox.mph that contains our library of “Geometry Parts” (i.e.,
part primitives) for users to assemble into their own cuffs in the COMSOL GUI. See Creating New Part Primitives
for instructions on how to add new part primitives. After a part primitive is defined in the “Geometry Parts” node
in the COMSOL GUI, under “Component 1”, the user may secondary-click on the “Geometry 1” node -> “Parts”
and select a part primitive. Importantly, the order of instantiated parts in the “Geometry 1” node matters for proper
material assignment; the user must consider that when a new part occupies volume within a previously instantiated part,
COMSOL will override the previous material assignment for the shared volume with the latter created part’s material
assignment. For example, if a user is modeling a cuff containing an embedded contact electrode (i.e., the contact
surface is flush with the insulator’s inner surface) and the entire cuff is bathed in saline (i.e., surgical pocket), the user
would (1) add the part primitive for the saline cuff “fill” since it is the outermost domain, (2) add the cuff “insulator”
which would override its volume within the saline, and (3) add the contact “conductor” which would override the cuff
insulator domain within the contact conductor. The order of instantiation of part primitives in COMSOL mirrors the
order of the parts listed in the “preset” JSON file.

The part’s required instantiation “Input Parameters” (in the “Settings” tab) have default values (found in the “Expres-
sion” dialogue boxes) that should be overridden and populated using parameter values to define the geometry of the
part in your preset’s implementation. The “Expression” dialogue boxes must contain parameter values already defined
in a “Parameter Group” under the “Global Definitions” node (i.e., parameter names for either constants with units (e.g.,
“5 [um]”) or mathematical relationships between other parameters (e.g., “parameter1 + parameter2”)). The parameter
values in the “Parameter Group” under the “Global Definitions” node are populated with the list of “params” in the
“preset” cuff JSON file (explained in more detail below).

Once the user has succeeded in assembling their cuff in the COMSOL GUI from parameterized instantiations of parts in
examples/parts/sandbox.mph, they are ready to create a new “preset” cuff JSON file in config/system/cuffs/.

99

https://doi.org/10.1371/journal.pcbi.1009285.g003


ASCENT, Release v1.3.1

Fig. 1: Library of parts for electrode contacts. In the top two panels, “circle material” and “rectangle material” indicate
that the contact’s dimensions refer to the length of the materials, rather than the dimension of the contact when it is
bent to wrap around the circular inner diameter of the cuff. The dimensions “_thk” refer to the contact thickness. The
dimensions “_recess” refer to the thickness of the domain created if the contact is recessed into the cuff.
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Fig. 2: Library of parts for cuffs. Parameters “U(t)_shift_x” and “U(t)_shift_y” change how the insulating material is
centered around the inner diameter of the cuff as shown by the orange annotation.
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See the existing files in that directory for examples. The required elements of a “preset” cuff JSON file are shown in
the skeleton structure below:

{
"code": String
"instances": [
{
"type": String,
"label": Double,
"def": {

"parameter1": String // key is name of expected parameter in COMSOL
... // for all parameters (specific for part primitive "type")

},
"materials": [

{
"info": String,
"label_index": Integer

}
... // for all materials in a part

]
}
... // for all instances
]
"params": [

{
"name": String, // e.g., "parameter1_<code_value>" ... such as "pitch_Pitt"
"expression": String,
"description": String

}
... // for all parameters

]
},
"expandable": Boolean,
"fixed_point": String,
"angle_to_contacts_deg": Double,
"offset": {

"parameter1": Double,
// parameter must be defined in "params" list, value is weight of

parameter value
// (e.g., if radius of wire contact, need 2 to get contributing radial

distance
// between nerve and cuff)
... // for all parameters informing how much "extra" space needed in cuff

}
}

“code”: The value (String) is a unique identifier for the parameters that are needed to define this cuff. All parameters
in the "params" [Object, ...] will need to end with the characters of this code preceded by "_" (e.g., “code” =
“Pitt”, the “pitch” parameter for the separation between contacts would be "pitch_Pitt").

“instances”: The value is a list of JSON Objects, one for each part instance needed to represent the cuff. Within each
part instance JSON Object, the user must define:

• "type": The value (String) defines which known primitive to instantiate, which matches the switch-case
in BOTH Part.createCuffPartPrimitive() AND Part.createCuffPartInstance() in Java (src/
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model/Part.java) behind the scenes.

• "label": The value (String) defines the label that will show up in the COMSOL file to annotate the instance of
the part primitive in the construction of your COMSOL FEM.

• "def": The value (Object) contains all parameters required to instantiate the chosen part primitive. The key-
value pairs will match the values entered in the COMSOL GUI for a part (i.e., “Settings” -> “Input Parameters”
panel) in examples/parts/sandbox.mph.

– Key-value pairs in this JSON Object will vary depending on the part primitive as defined in “type”. For
each parameter key, the value is a String containing a mathematical expression (of parameters) for COM-
SOL to evaluate.

• "materials": List of JSON Objects for each material assignment in a part instance (usually this is just one ma-
terial; contacts with recessed domains will have one material for the conductor and one material for the recessed
domain as the part instance will create two separate domains with independent selections)

– "info": The value (String) is the function of the domain in the FEM (i.e., “medium”, cuff “fill”, cuff “in-
sulator”, contact “conductor”, and contact “recess”) that is used to assign material properties to a selected
domain. The value will match a key in the “conductivities” JSON Object in Model.

– "label_index": The value (Integer) corresponds to the index of the selection for the domain (in im.
labels, defined independently for each primitive case in Part.createCuffPartPrimitive() – see
code in src/model/Part.java) to be assigned to the material function. Note that im.labels are in-
dexed starting at 0.

"params": The value is a list of JSON Objects, one for each parameter used to define parameterizations of part
primitives in COMSOL’s Global Definitions. The structure of each JSON Object is consistent with the format of
the dialogue boxes in each “Parameters” group (i.e., “Name”, “Expression”, “Description”) where the parameters are
populated in the COMSOL GUI:

• "name": The value (String) is the name of the parameter.

• "expression": The value (String) is the expression/constant with units that COMSOL will evaluate. Therefore,
if the value is a constant, units wrapped in “[]” are required (e.g., “5 [um]”). If the value is an expression relating
other parameters (that already are dimensioned with units) with known mathematical expressions (e.g., multiply
"*", divide "/", add "+", subtract "-", exponent "^", trigonometric formulas: "sin()", "cos()", "tan()",
"asin()", "acos()", "atan()"), do not add units after the expression.

• "description": The value (String) can be empty (i.e., “”) or may contain a description of the parameter such
as a reference to the source (e.g., published patent/schematics) or a note to your future self.

"expandable": The value (Boolean) tells the system whether to expect the implementation of the cuff in COMSOL
to be able to expand beyond the manufactured resting cuff diameter to fit around a nerve. For a cuff to be expandable, it
must be constructed from part primitives that have been parameterized to expand as a function of "R_in". See config/
system/cuffs/Purdue.json for an example of an expandable cuff. Expandable cuffs should be parameterized such
that the contact length remains constant.

"fixed_point": The value (String) defines which point on the cuff remains fixed when expanding. Note that these
are not behaviors, this option will change nothing regarding how the cuff is generated. This parameter is descriptive
only, indicating how the cuff is parameterized based on the part primitives. This parameter is to inform the cuff shift
algorithm on how it should account for cuff expansion. Currently, two options are implemented:

1. "center": In this case, the center of the contact always remains at the same angle when expanding.

2. "clockwise_end": In this case, the clockwise end of either the cuff, or the contact (both will work correctly)
remains fixed. Note, this option assumes that the fixed point for the clockwise end is at theta = 0.

"angle_to_contacts_deg": The value (Double, units: degrees) defines the angle to the contact point of the nerve
on the inside of the cuff of the cuff (measured counterclockwise from the +x-axis before any rotation/deformation of
the cuff).
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"offset": The JSON Object contains keys that are names of parameters defined in the list of “params” in this “preset”
cuff file. If the inner diameter of the cuff must expand to allow for additional distance between the nerve and "R_in" (the
inner surface of the cuff insulator), the user adds key-value pairs for the offset buffer here. For each known parameter
key, the user sets the value (Double) to be the multiplicative factor for the parameter key. The list of key-value pairs
can be empty, as is the case for most cuffs. Once offset is added to a cuff, the values are automatically used in Runner’s
compute_cuff_shift() method.

For example usage of this functionality, see config/system/cuffs/Purdue.json as replicated below:

"offset": {
"sep_wire_P": 1, // sep_wire_P is the separation between the wire contact and the

// inner diameter of the cuff
"r_wire_P": 2 // r_wire_P is the radius of the circular cross section of the

// wire contact (i.e., half of the wire’s gauge)
}

// the above JSON Object adds an offset buffer between the nerve and the inner
// diameter of the cuff of : (1*sep_wire_P) + (2*r_wire_P)

6.3 Creating new part primitives

Though we provide a library of part primitives to assemble representations of many cuff electrodes as shown in
examples/parts/sandbox.mph, users may find it necessary to add their own part primitives for representing their
custom cuff electrode designs. Use the following instructions as a guide and link to resources for creating a new part
primitive.

The COMSOL GUI has a “Geometry Parts” node under the “Global Definitions”. The pipeline adds part primi-
tives—i.e., the geometry of different pieces of cuff electrodes (e.g., contacts, insulators, cuff fill (e.g., encapsulation
tissue, mineral oil, saline), or medium (e.g., surrounding muscle, fat)—as “parts” under “Geometry Parts”. Their re-
sulting volumes (domains), surfaces, and points (used for point current sources) are added to the list of “cumulative
selections” which are later used to assign appropriate mesh settings, material properties, and boundary conditions.

Note: For more information on specific primitives, see ASCENT Part Primitives

1. Create and label your part. Open up examples/parts/sandbox.mph, secondary-click on “Geometry Parts”,
choose “3D Part”. Give your part an appropriate label as it will later be used in creating “preset” cuff JSON files and
as a flag for the primitive in our Java Part class (src/model/Part.java).

2. Define your part’s geometry. Secondary-click on the new part under “Geometry Parts” to add the geometry opera-
tions required to construct your cuff (e.g., “Block”, “Cone”, “Cylinder”, “Sphere”, “More Primitives”, “Work Plane”).
See the operations under the other part primitives in sandbox.mph as a guide in creating your geometry, as well as
COMSOL’s documentation (in particular their “Appendix A – Building a Geometry”) and “Introductory Video Series
on How to Build Geometries in COMSOL”. In creating your geometry, carefully label each operation to improve read-
ability of your geometry operations. Taking care to label the operations will not only help to communicate to other
users and your future self what operations must occur, but also will help you in cleaning up your Java code in the Part
class (part of step 6). The dimensions and locations of part geometries should refer to “Input Parameters” or parameters
stored in a parameters group under “Global Definitions”.

3. Assign each feature of interest (i.e., volumes/domains, surfaces, points) to a “Cumulative selection”. The final form
of domains that you will want to assign to a material property need to be assigned to a “Cumulative selection”, which
can be found for the final geometry operation under the “Settings” tab. In “Settings”, under the “Contribute to” drop
down menu within the “Selections of Resulting Entities” section, the first time you refer to a cumulative selection you
will need to click the “New” button and type in the name of the selection. Again, take care to give an informative
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label. Our convention, though not required, is to make the cumulative selection names in all capitals to improve code
readability.

4. Compact sandbox.mph file history. File -> Compact History removes any operations you may have tested but did
not ultimately use to create your part.

5. Export Java code. Go to File -> Save As, give a meaningful path/file name, and change the file type to “Model File
for Java (*.java)”.

6. Add the operations for your part primitive to the Part.createCuffPartPrimitive() method in Java (src/
model/Part.java). With the text editor of your choice, open the newly created *.java file. Toward the bottom of
the file, the operations you just performed in COMSOL are contained in a block of code. Performing a "Command+F"
(on Mac) or "Control+F" (on Windows) for your new part primitive’s name that you gave in the GUI (from step 1)
should take you to the first line of the code block of interest, which looks like:

"model.geom("part<#>").label(<your part’s name>);

All subsequent lines starting with "model.geom("part<#>")" are of interest. Copy them to your clipboard. With
Part.createEnvironmentPartPrimitive() as a guide (since it is by far the simplest and most contained “prim-
itive” – in reality it is just a cylinder contributed to the “MEDIUM” cumulative selection), add your lines to Part.
createCuffPartPrimitive().

• Add a “case” in the switch-case (e.g., case "TubeCuff_Primitive"). Within this case-block, all operations for
the new primitive will be added.

• For each line in your code (copied from the exported *.java file) that begin with "model.geom.("part<#>").
inputParam().set("<my_parameter>", "<default_value>"), at the top of your new case-block, add the
following line to set the “Input Parameters” you established in the COMSOL GUI:

– mp.set("<my_parameter>", "<default_value>")

• Still looking at Part.createEnvironmentPartPrimitive() as an example, now create your list of “selec-
tions” in “im.labels” which are the lines that follow after the “Input Parameters” are defined. Then add the for
loop that loops over the im.labels [String, ...] adding them to COMSOL’s selections. These lines will
look like:

im.labels = new String[] {
"<MY_CUMULATIVE SELECTION_1>", // note: This is index 0
"<MY_CUMULATIVE SELECTION_2>", // note: This is index 1
...
}

for (String cselLabel : im.labels) {
model.geom(id).selection().create(im.next("csel", cselLabel),
"CumulativeSelection").label(cselLabel)
}

• The lines that follow the Cumulative Selection labeling add the geometry features of the COMSOL part which
COMSOL has also conveniently exported for you in the *.java file. See Java Utility Classes for an explanation
of our Java IdentifierManager utility class that we created to abstract away from COMSOL’s indexing system
to improve code readability. Our "IdentifierManager" class enables the user to access previously defined
selection tags by an informative label programmatically. Part.createEnvironmentPartPrimitive() and
Part.createCuffPartPrimitive() are also great working examples of how we use the COMSOL plugin in
an IDE to clean up the code (e.g., creating a COMSOL “GeomFeature” to shorten the length of each line).

• End the case for your new part primitive with a "break;" (this is very important!)

7. Add the operations for your part primitive to the Part.createCuffPartInstance() method (src/model/Part.
java).
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• Create a List[String] containing the “Input Parameters” you established in the COMSOL GUI. These lines
will look like:

String[] myPrimitiveParameters = {
"<my_parameter1>",
"<my_parameter2>",
... // for all Input Parameters
}

• Add a for loop that adds all the “Input Parameters” to the part instance. These lines will look like:

for (String param : myPrimitiveParameters) {
partInstance.setEntry("inputexpr", param, (String) itemObject.get(param));
}

• Our primitives have an additional (optional) section for selection imports. Each defined selection used in your
geometry operations will be visible in the “Contribute to” drop-down menu unless you toggle each selection
“off”. An example of how to “clean up” your selections imported is shown below:

// imports

// so that the program only imports selections that are used partInstance.set("selkeepnoncontr", false);

// to selectively import the DOMAIN for whatever selection index 0 is in myLabels (defined in im.labels in //
createCuffPartPrimitive()). To exclude, “off” instead of “on”. partInstance.setEntry("selkeepdom",
instanceID + "_" + myIM.get(myLabels[0] + ".dom", "on"));

// to selectively import the BOUNDARY for whatever selection index 0 is in myLabels (defined in im.labels // in
createCuffPartPrimitive()). To exclude, “off” instead of “on”. partInstance.setEntry("selkeepbnd",
instanceID + "_" + myIM.get(myLabels[0] + ".bnd", "on"));

// to selectively import the POINT for whatever selection index 0 is in myLabels (defined in im.labels // in
createCuffPartPrimitive()). To exclude, “off” instead of “on”. partInstance.setEntry("selkeeppnt",
instanceID + "_" + myIM.get(myLabels[0] + ".pnt", "on"));

• End the case for your new part instance with a “break;” (this is very important!)

8. (Step is optional but recommended). Add your new part to examples/parts/sandbox.mph. Simply save your
sandbox.mph file as a *.mph, if you have not already, for future ability to assemble cuffs using your new part in the
COMSOL GUI.

6.4 Implementations of clinically used cuff electrodes

6.4.1 LivaNova helical cuff electrode

We implemented the LivaNova helical cuff electrodes used clinically to treat patients with epilepsy and they are included
in ‘config/system/cuffs/’. Each cuff includes a description of it’s unique elements in the "description" field:

• LivaNova2000_v2.json

• LivaNova2000_v2.json

• LivaNova2000_v2_common_fill.json

• LivaNova3000_v2_common_fill.json

• LivaNovaAdaptiveDiam_v2_acute.json

• LivaNovaAdaptiveDiam_v2_chronic.json
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The dimensions used for the LivaNova helical cuffs are based on CAD files and technical drawings shared with the Grill
Lab by LivaNova PLC as part of a contractual research agreement. The files themselves are proprietary and cannot be
shared.

Modeling work which used the above cuff JSON files is published in (Davis et al., 2023, Musselman et al., 2023). Each
paper has associated datasets published on sparc.science and the datasets are cited in the data availability statement of
each paper.

6.4.2 ImThera six-contact cuff electrode

We implemented the ImThera six-contact cuff electrode used clinically to treat sleep apnea and it is included in config/
system/cuffs/:

• ImThera_flip_100.json

The dimensions used for the ImThera cuff are based on technical drawings shared with the Grill Lab by LivaNova PLC
as part of a contractual research agreement. The files themselves are proprietary and cannot be shared.

Modeling work which used the ImThera_flip_100.json file is published in (Blanz et al., 2023).
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CHAPTER

SEVEN

MODELING NEURAL RECORDING

This feature is the first introduction of multiple cuffs within the ASCENT pipeline. Begin setting up a run as usual
with ASCENT (refer to Getting Started for guidance and a tutorial). To use our pipeline to model neural recording,
two major elements need to be present within the JSON configuration files. To prompt the pipeline to model neural
recording of single fiber action potentials (SFAPs), the user should first provide a list of two JSON Objects to the cuff
property within the Model configuration file. Each JSON Object within this list should have all the original required
cuff properties outlined in Model including the "index" property which assigns the cuff an index identifier that can be
referenced to set contact weights and cuff type (stimulation or recording) in Sim. The second major element is defining
the electrode contact weights in the Sim file. As with a original single cuff ASCENT run through, the active_srcs
property in this file contains key-value pairs of contact weights for each preset cuff (as described in Sim File). Now,
for modeling recording, the user should add an additional active_recs property that serves the same purpose for the
recording cuff. For these two properties, the user must add an additional key-value pair called cuff_index, which
ASCENT uses to matche the weighting properties to the cuff indices we defined in the Model file. Any index defined
in "active_srcs" designates a stimulating cuff. Any index defined in "active_recs" designates a recording cuff.
Remember to include any cuff preset names the relevant stimulation and recording cuffs in config/system/cuffs.
Run the pipeline as usual from the root directory with python run pipeline <insert run index>. Following
the completion of the run, change directories to /submit and run python submit.py <insert run index> to
submit the NEURON simulations. Following the completion of the NEURON simulations, navigate to the root as-
cent directory and run python run import_n_sims <insert run index> to transfer NEURON results from the
submit directory to the sample directory, where the data can be accessed by the scripts in examples/analysis.

Similar to the tutorial (See Getting Started), we provide example configuration files for modeling stimulation and
recording of a rat vagus nerve. The files can be found in examples/cap_tutorial.

7.1 NEURON Outputs

When running a model with a recording cuff, in addition to the standard stimulation cuff output files, running NEURON
simulations using submit.py will produce an output .dat file for every n_sim generated, called SFAP_time, containing
the recorded SFAP collected by the recording cuff. Each SFAP file has a column for the stimulation waveform’s time
points (ms) and a column for corresponding recorded SFAP (uV).

Optionally, the user can set the saving > cap_recording > Imembrane_matrix boolean variable in the Simula-
tion file to true to save a transmembrane current matrix for each fiber which contains all the transmembrane currents
of every compartment across time. Be careful, as these files can be quite large if there are many fiber simulations.
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7.2 Current Limitations

• The multiple cuff configuration framework is designed to support any number of cuffs, but has only been tested
using two cuffs, with one designated as the stimulation cuff and the other designated as the recording cuff.

7.3 Analysis Scripts

7.3.1 Plotting Single Fiber Action Potentials (SFAPs)

The examples/analysis/plot_SFAPs.py script allows users to visualize the recorded single fiber action potentials
(SFAPs) that resulted from modeling the neural recordings. The user should open the script and update the sample,
model, and sim number accordingly in the call to query, as in the other analysis scripts. The user may plot the SFAPs
from all the fibers simulated (default behavior), controlled by the all_fibers input boolean argument to the call to
the query class’ sfap_data function. Alternatively, the user may choose to indicate a subset of fiber indices to plot
using the fiber_indices variable at the top of the script. If both variables are provided, and all_fibers is True,
the fiber_indices are ignored and all fibers will be provided. Run the script from the ascent root directory with the
command python examples/analysis/plot_SFAPs.py.

7.3.2 Plotting Compound Action Potentials (CAPs)

The examples/analysis/plot_CNAP.py script allows users to visualize the combined action potentials of multiple
fibers. The user should open the script and update the sample, model, and sim number accordingly in the call to query,
as in the other analysis scripts. As described above, the user may plot the combined SFAPs from all simulated fibers
(default behavior), or may choose to only visualize a subset of fibers by indicating their indices in the fiber_indices
variable. Run the script from the ascent root directory with the command python examples/analysis/plot_CNAP.
py.

7.3.3 Generating Current Templates per Fiber Diameter

In examples/analysis, a script is provided called generate_templates.py which allows users to generate trans-
membrane current action potential templates for each fiber diameter in a given simulation. These templates require
the transmembrane current matrices to be saved, as described above. The templates can be used in conjunction with
the following MATLAB repository (https://github.com/eurypt/CAPulator) to simulate whole-nerve fiber populations
efficiently with a a speed up of 27,000 - 1,900,000x in terms of CPU hours [Peña et al., 2024]. Rather than simulating
every action potential of every nerve fber, the template method uses the action potential from a single point in space and
a few discrete nerve fiber diameters to interpolate the action potential at every point in space across all fiber diameters
present in the nerve. See the publication for more details.

To generate the templates, open the script and update the sample, model, sim, and fiber values at the top of the file
accordingly. The fiber variable refers to the fiber number within each generated n_sim. Then, run the script from
the ascent root directory with the command python examples/analysis/generate_templates.py. The action
potential templates are expected to differ in latency depending on the stimulation model parameters, and the templates
differ across fiber types. Thus, the user should run the script for each distinct set of stimulation parameters or fiber
types.
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CHAPTER

EIGHT

CONVERGENCE ANALYSIS EXAMPLE

Note: The following convergence analysis was performed for a rat cervical vagus nerve and is provided as an illustrative
example.

The outer boundaries of the model (assigned to electrical ground) were initially set to dimensions that are known to be
excessively large in both length (100 mm) and radius (20 mm) (See image below). For testing of convergence of the
model length and diameter, we carefully controlled the mesh parameters such that any changes in the threshold to excite
model nerve fibers positioned in the finite element model are attributed to changes in model dimensions and not to a
change in mesh density. First, we used an excessive number of domain mesh elements. Second, to maintain consistent
meshing in the area of interest despite a change in geometry of the outer boundary of the model, the proximal region
of the model surrounding the nerve and electrode (i.e., “proximal”, which is the full length of the nerve) was assigned
its own mesh entirely independent of the outer boundary region (i.e., “distal”).

Fig. 1: Convergence of FEM model dimensions and mesh density for 2 and 10 m myelinated MRG fibers modeled in
a rat cervical vagus nerve.

For different model sizes and mesh densities, we determined excitation thresholds for 100 randomly placed 2 µm
diameter myelinated model axons in the nerve. First, with the radius of the model held constant at 20 mm, we halved
the length of the model until there was a change in threshold of greater than 2% compared to the 100 mm-long model.
The resulting length of the model was chosen to be 6.25 mm, as the next shortest length (3.125 mm) had at least one
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fiber with a threshold change of 15%, which was above our tolerance of 2%. Second, with the length of the model
held constant at 6.25 mm, the radius of the model was halved until there was a change in threshold of greater than 2%
compared to the 20 mm-radius model. The resulting radius of the model was chosen to be 1.25 mm. The radius of
the model could not be reduced further without interfering with the electrode geometry. We then reduced the number
of mesh elements until there was a 2% change in thresholds for activation of model nerve fibers. Meshing parameters
that resulted in ~273,000 domain elements for the 1.25 mm radius and 6.25 mm length model were chosen for further
studies.

Lastly, the length was again converged with 10 µm diameter myelinated model axons using the previously found model
radius and mesh density to ensure that the model length incorporated enough nodes of Ranvier for convergence of
threshold for all native fiber diameters. A conservative estimate for the largest myelinated fiber diameter found in the
cervical level of a rat vagus nerve is 10 µm [de Alcântara et al., 2008]. The largest diameter nerve fiber native to this
region is of interest in our convergence studies because it will have the fewest number of nodes per unit length (based
on INL=100*D). We found that the FEM length needed to be longer for 10 µm diameter myelinated fibers (12.5 mm)
than 2 µm diameter myelinated fibers (6.25 mm).
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CHAPTER

NINE

TROUBLESHOOTING GUIDE

9.1 General Troubleshooting Steps

• Check your geometry (ascent/samples/sample_index/models/model_index/debug_geom.mph)

• Check your sample (ascent/samples/sample_index/slides/cassette_index/slide_index/masks)

9.2 Installation Issues

• NEURON

– Issue: Sometimes NEURON installation will complete but NEURON will not be installed

– Solution: Run the installer in Windows 8 compatibility mode

9.3 Pipeline Issues

• Sample

– Issue: Small white pixel islands cause the pipeline to fail, or the pipeline does not fail but very small
elements are present as fascicles that reflect segmentation errors

– Solution: increase value of image_preprocessing>object_removal_area in sample.json

• Model

– Issue: fascicle borders appear ragged/wavy in model geometry

– Solutions:

∗ Increase inner_interp_tol and/or outer_interp_tol in sample.json (depending on whether the Issue
exists for outers or inners)

∗ If your mask is very pixelated, increase smoothing>fascicle distance in sample.json

– Issue: The pipeline solves one basis, then errors.

– Solution: In COMSOL, disable automatic saving of recovery files.
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9.4 COMSOL Issues

• Issue: fiber xy-location(s) fall outside the solution, which results in error while extracting potentials.
-Error log: - Exception: com.comsol.util.exceptions.FlException: Internal numerical
error - Messages: Internal error in numerical routines. -Output log: - Intel MKL Error:
Parameter 7 was incorrect on entry to DGELS.

• Solution: Increase parameter in Sim -> “fibers” -> “xy_trace_buffer”. Note: this is assuming that
“endo_only_solution” in Run config is true.

9.5 NEURON Issues

• Issue: Compiling NEURON files with python submit.py results in an error, mpicc: command not found

• Solution: Install open-mpi 2.0 and add to path

9.6 Python Issues

• Issue: python output prints out of order with java output

• Solution: pass the -u flag (i.e. python -u run pipeline ), which turns off output buffering
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CHAPTER

TEN

CODE HIERARCHY

10.1 Python Classes

Warning: This page of our documentation is not actively updated, as we work on migrating code documentation
to docstrings. Most of the information herein remains revelant, but please refer to the codebase for the most up to
date structure.

10.1.1 Python classes for representing nerve morphology (Sample)

The nerve cross-section includes the outer nerve trace (if present; not required for monofascicular nerves) and, for each
fascicle, either a single “inner” perineurium trace or both “inner” and “outer” perineurium traces. We provide auto-
mated control to correct for tissue shrinkage during histological processes [Boyd and Kalu, 1979] (Sample Parameters).
Morphology metrics (e.g., nerve and fascicle(s) cross-sectional areas and centroids, major and minor axis lengths, and
rotations of the best-fit ellipses) are automatically reported in Sample (Sample Parameters).

Trace

Trace is the core Python class for handling a list of points that define a closed loop for a tissue boundary in a nerve cross-
section (see “Tissue Boundaries” in Fig 2). Trace has built-in functionality for transforming, reporting, displaying,
saving, and performing calculations on its data contents and properties. Python classes Nerve, Fascicle, and Slide are
all special instances or hierarchical collections of Trace.

A Trace requires inputs of a set of (x,y)-points that define a closed loop and an exceptions JSON configuration file.
The z-points are assumed to be ‘0’. The Trace class already provides many built-in functionalities, but any further
user-desired methods needed either to mutate or access nerve morphology should be added to the Trace class.

Trace uses the OpenCV [Bradski, 2000], Pyclipper [Chalton and others, 2015–], and Shapely [Gillies and others,
2007–] Python packages to support modifier methods (e.g., for performing transformations):

• scale(): Used to assign dimensional units to points and to correct for shrinkage of nerve tissues during pro-
cessing of histology.

• rotate(): Performs a rigid rotational transformation of Trace about a point (positive angles are counter-
clockwise and negative are clockwise).

• shift(): performs a 2D translational shift to Trace (in the (x,y)-plane, i.e., the sample cross-section).

• offset(): Offsets Trace’s boundary by a discrete distance from the existing Trace boundary (non-affine trans-
formation in the (x,y)-plane, i.e., the sample cross-section).

• pymunk_poly(): Uses Pymunk to create a body with mass and inertia for a given Trace boundary (used in
deform(), the fascicle repositioning method, from the Deformable class).
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• pymunk_segments(): Uses Pymunk to create a static body for representing intermediate nerve boundaries (used
in deform(), the fascicle repositioning method, from the Deformable class).

Trace also contains accessor methods:

• within(): Returns a Boolean indicating if a Trace is completely within another Trace.

• intersects(): Returns a Boolean indicating if a Trace is intersecting another Trace.

• centroid(): Returns the centroid of the best fit ellipse of Trace.

• area(): Returns the cross-sectional area of Trace.

• random_points(): Returns a random list of coordinates within the Trace (used to define axon locations within
the Trace).

Lastly, Trace has a few utility methods:

• plot(): Plots the Trace using formatting options (i.e., using the plt.plot format, see Matplotlib documentation
for details).

• deepcopy(): Fully copy an instance of Trace (i.e., copy data, not just a reference/pointer to original instance).

• write(): Writes the Trace data to the provided file format (currently, only COMSOL’s sectionwise format
—ASCII with .txt extension containing column vectors for x- and y-coordinates—is supported).

Nerve

Nerve is the name of a special instance of Trace reserved for representing the outer nerve (epineurium) boundary. It
functions as an alias for Trace. An instance of the Nerve class is created if the "NerveMode" in Sample (“nerve”) is
“PRESENT” (Sample Parameters)”

Fascicle

Fascicle is a class that bundles together instance(s) of Trace to represent a single fascicle in a slide. Fascicle can be
defined with either (1) an instance of Trace representing an outer perineurium trace and one or more instances of
Trace representing inner perineurium traces, or (2) an inner perineurium trace that is subsequently scaled to make
a virtual outer using Trace’s methods deepcopy() and offset() and the perineurium thickness defined by the
"PerineuriumThicknessMode" in Sample ("ci_perineurium_thickness") (Sample Parameters). Upon instan-
tiation, Fascicle automatically validates that each inner instance of Trace is fully within its outer instance of Trace and
that no inner instance of Trace intersects another inner instance of Trace.

Fascicle contains methods for converting a binary mask image of segmented fascicles into instances of the
Fascicle class. The method used depends on the contents of the binary image inputs to the pipeline
as indicated by the "MaskInputMode" in Sample ("mask_input") (i.e., INNER_AND_OUTER_SEPARATE,
INNER_AND_OUTER_COMPILED, or INNERS). For each of the mask-to-Fascicle conversion methods, the OpenCV
Python package finds material boundaries and reports their nested hierarchy (i.e., which inner Traces are within which
outer Traces, thereby associating each outer with one or more inners). The methods are expecting a maximum hierar-
chical level of 2: one level for inners and one level for outers.

• If separate binary images were provided containing contours for inners (i.tif) and outers (o.tif), then the
"MaskInputMode" in Sample ("mask_input", Sample Parameters) is INNER_AND_OUTER_SEPARATE.

• If a single binary image was provided containing combined contours of inners and outers (c.tif), then the
"MaskInputMode" in Sample ("mask_input", Sample Parameters) is INNER_AND_OUTER_COMPILED.

• If only a binary image was provided for contours of inners (i.tif), the "MaskInputMode" ("mask_input",
Sample Parameters) in Sample is INNERS.
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In all cases, the Fascicle class uses its to_list() method to generate the appropriate Traces. Additionally, Fascicle
has a write() method which saves a Fascicle’s inner (one or many) and outer Traces to files that later serve as inputs
for COMSOL to define material boundaries in a nerve cross-section (sectionwise file format , i.e., ASCII with .txt
extension containing column vectors for x- and y-coordinates). Lastly, Fascicle has a morphology_data() method
which uses Trace’s area() and ellipse() methods to return the area and the best-fit ellipse centroid, axes, and
rotation of each outer and inner as a JSON Object to Sample (Sample Parameters).

Slide

The Slide class represents the morphology of a single transverse cross-section of a nerve sample (i.e., nerve and fascicle
boundaries). An important convention of the pipeline is that the nerve is always translated such that its centroid (i.e.,
from best-fit ellipse) is at the origin (x,y,z) = (0,0,0) and then extruded in the positive (z)-direction in COMSOL. Slide
allows operations such as translation and plotting to be performed on all Nerve and Fascicle Traces that define a sample
collectively.

To create an instance of the Slide class, the following items must be defined:

• A list of instance(s) of the Fascicle class.

• "NerveMode" from Sample (“nerve”) (i.e., PRESENT as in the case of nerves with epineurium (n.tif) or
NOT_PRESENT otherwise, (Sample Parameters)).

• An instance of the Nerve class if "NerveMode" is PRESENT.

• A Boolean for whether to reposition fascicles within the nerve from "ReshapeNerveMode" in Sample (Sample
Parameters).

• A list of exceptions.

The Slide class validates, manipulates, and writes its contents.

• In Slide’s validation() method, Slide returns a Boolean indicating if its Fascicles and Nerve Traces are over-
lapping or too close to one another (based on the minimum fascicle separation parameter in Sample).

• In Slide’s smooth_traces() method, Slide applies a smooth operation to each Trace in the slide, leveraging the
offset method, and applying smoothing based on smoothing parameters. defined in Sample (Sample Parame-
ters).

• In Slide’s move_center() method, Slide repositions its contents about a central coordinate using Trace’s
shift() method available to both the Nerve and Fascicle classes (by convention, in ASCENT this is (x,y) =
(0,0)).

• In Slide’s reshaped_nerve() method, Slide returns the deformed boundary of Nerve based on the
"ReshapeNerveMode" in Sample ("reshape_nerve", (Sample Parameters)) (e.g., CIRCLE).

• Using the methods of Nerve and Fascicle, which are both manifestations of Trace, Slide has its own methods
plot(), scale(), and rotate().

• Slide has its own write() method which determines the file structure to which the Trace contours are saved to
file in samples/<sample index>/slides/.

Note that the sample data hierarchy can contain more than a single Slide instance (the default being 0 as the cassette
index and 0 as the section index, hence the 0/0 seen in ASCENT Data Hierarchy) even though the pipeline data pro-
cessing assumes that only a single Slide exists. This will allow the current data hierarchy to be backwards compatible
if multi-Slide samples are processed in the future.
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Map

Map is a Python class used to keep track of the relationship of the longitudinal position of all Slide instances for a Sample
class. At present, the pipeline only supports models of nerves with constant cross-sectional area, meaning only one
Slide is used per FEM, but this class is implemented for future expansion of the pipeline to construct three-dimensional
nerve models with varying cross-section (e.g., using serial histological sections). If only one slide is provided, Map is
generated automatically, and the user should have little need to interact with this class.

Sample

The Sample class is initialized within Runner’s run() method by loading Sample and Run configurations (JSON Con-
figuration Files). First, Sample’s build_file_structure() method creates directories in samples/ and populates
them with the user’s file inputs from input/<NAME>/; the images are copied over for subsequent processing, as well
as for convenience in creating summary figures. Sample then uses its populate() method to construct instances of
Nerve and Fascicle in memory from the input sample morphology binary images (see Fascicle class above for details).
Sample’s populate() method packages instances of Nerve and Fascicle(s) into an instance of Slide.

Sample’s get_factor() method obtains the ratio of microns/pixel for the input masks, either utilizing a scale bar
image, or an explicit scale factor input depending on the user’s ScaleInputMode defined in Sample (Sample Param-
eters).

Sample’s scale() method is used to convert Trace points from pixel coordinates to coordinates with units of distance
based either on the length of the horizontal scale bar as defined in Sample (micrometers) and the width of the scale
bar (pixels) in the input binary image (s.tif), or on the explicitly specified scale ratio defined in Sample (Sample
Parameters). If using a scale bar for scale input, it must be a perfectly horizontal line. Sample’s scale() method is also
used within populate() to correct for shrinkage that may have occurred during the histological tissue processing.
The percentage increase for shrinkage correction in the slide’s 2D geometry is stored as a parameter “shrinkage” in
Sample (Sample Parameters). Additionally, Slide has a move_center() method which is used to center Slide about
a point within populate(). Note that Sample is centered with the centroid of the best-fit ellipse of the outermost
Trace (Nerve if "NerveMode" in Sample (“nerve”) is "PRESENT", outer Trace if "NerveMode" is "NOT_PRESENT",
(Sample Parameters)) at the origin (0,0,0). Change in rotational or translational placement of the cuff around the nerve
is accomplished by moving the cuff and keeping the nerve position fixed (Cuff Placement on the Nerve).

Sample’s im_preprocess() method performs preprocessing operations on the binary input masks based on the pa-
rameters given under preprocess in Sample (Sample Parameters).

Sample’s io_from_compiled() generates outers (o.tif) and inners (i.tif) from the (compiled) c.tif mask if
"MaskInputMode" is INNER_AND_OUTER_COMPILED. These generated masks are then used in Fascicle’s to_list()
method.

Sample’s generate_perineurium() method is used to generate the perineurium for fascicle inners in the case where
"MaskInputMode" = INNERS. This leverages Trace’s offset() method, and fits the generated perineurium based on
ci_perineurium_thickness defined in Sample (Sample Parameters).

Sample’s populate() method also manages operations for saving tissue boundaries of the Sample (Nerve and Fasci-
cles) to CAD files (slides/#/#/sectionwise2d/) for input to COMSOL with Sample’s write() method.

Sample’s output_morphology_data()method collects sample morphology information (area, and the best-fit ellipse
information: centroid, major axis, minor axis, and rotation) for each original Trace (i.e., Fascicle inners and outers, and
Nerve) and saves the data under “Morphology” in Sample.

Lastly, since Sample inherits Saveable, Sample has access to the save() method which saves the Python object to
file.
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Deformable

If "DeformationMode" in Sample (“deform”) is set to NONE, then the Deformable class takes no action (Sample
Parameters). However, if "DeformationMode" in Sample is set to PHYSICS, then Deformable’s deform() method
simulates the change in nerve cross-section that occurs when a nerve is placed in a cuff electrode. Specifically, the outer
boundary of a Slide’s Nerve mask is transformed into a user-defined final geometry based on the "ReshapeNerveMode"
in Sample (i.e., CIRCLE) while maintaining the cross-sectional area. Meanwhile, the fascicles (i.e., outers) are repo-
sitioned within the new nerve cross-section in a physics-based way using Pymunk [Blomqvist, 2007], a 2D physics
library, in which each fascicle is treated as rigid body with no elasticity as it is slowly “pushed” into place by both
surrounding fascicles and the nerve boundary.

Fig. 1: Snapshots at 0%, 50%, and 100% (left-to-right) of the deformation process powered by the pygame package
[Shinners, 2011–]. The deformation process is shown for two minimum fascicle separation constraints: 10 µm (top
row) and 20 µm (bottom row). The geometry at 0% deformation is shown after the fascicles have been spread out to
the minimum separation constraint.

The deform() method updates the nerve boundary to intermediately-deformed nerve traces between the nerve’s
"boundary_start" (i.e., the Trace’s profile in segmented image) and "boundary_end" (i.e., the Trace’s profile after
accommodation to the cuff’s inner diameter, which is determined by the “ReshapeNerveMode” ("reshape_nerve",
Sample Parameters) while the fascicle contents are allowed to rearrange in a physics-space. By default, all fascicles
have the same “mass”, but their moment of inertia is calculated for each fascicle based on its geometry (see Trace’s
pymunk_poly() method). Each fascicle is also assigned a “friction coefficient” of 0.5 as well as a “density” of 0.01.
These measurements are mostly important as they relate to one another, not as absolute values. Importantly, we set the
elasticity of all the fascicles to 0, so all kinetic energy is absorbed, and fascicles only move if they are directly pushed
by another fascicle or by the nerve barrier. In Sample’s populate() method, the final fascicle locations and rotations
returned by the deform() method are then applied to each fascicle using the Fascicle class’s shift() and rotate()
methods.

Deformable’s convenience constructor, from_slide(), is automatically called in Sample’s populate() method,
where a Slide is deformed to user specification. The from_slide() method takes three input arguments: The
Slide object from which to construct the current Deformable object, the "ReshapeNerveMode" (e.g., CIRCLE,
Sample Parameters), and the minimum distance between fascicles. If only inners are provided, virtual outers inter-
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act during nerve deformation to account for the thickness of the perineurium. Each inner’s perineurium thickness
is defined by the "PerineuriumThicknessMode" in Sample ("ci_perineurium_thickness", Sample Parame-
ters), which specifies the linear relationship between inner diameter and perineurium thickness defined in config/
system/ci_peri_thickness.json (Contact Impedance). Deformable’s from_slide()method uses Deformable’s
deform_steps() method to calculate the intermediately-deformed nerve traces between the boundary_start
and the boundary_end, which contain the same number of points and maintain nerve cross-sectional area. The
deform_steps() method maps points between boundary_start and boundary_end in the following manner.
Starting from the two points where the major axis of the Nerve’s best-fit ellipse intersects boundary_start and
boundary_end, the algorithm matches consecutive boundary_start and boundary_end points and calculates the
vectors between all point pairs. The deform_steps() method then returns a list of intermediately-deformed nerve
traces between the boundary_start and boundary_end by adding linearly-spaced portions of each point pair’s vec-
tor to boundary_start. Also note that by defining "deform_ratio" (value between 0 and 1) in Sample, the user
can optionally indicate a partial deformation of the Nerve (Sample Parameters). In the case where "deform_ratio"
is set to 0, minimum fascicle separation will still be enforced, but no changes to the nerve boundary will occur.

Enforcing a minimum fascicle separation that is extremely large (e.g., 20 µm) can cause inaccurate deformation, as
fascicles may be unable to satisfy both minimum separation constraints and nerve boundary constraints.

To maintain a minimum distance between adjacent fascicles, the Deformable’s deform() method uses Trace’s
offset() method to perform a non-affine scaling out of the fascicle boundaries by a fixed distance before defin-
ing the fascicles as rigid bodies in the pygame physics space. At regular intervals in physics simulation time, the nerve
boundary is updated to the next Trace in the list of intermediately-deformed nerve traces created by deform_steps().
This number of Trace steps defaults to 36 but can be optionally set in Sample with the "morph_count" parameter by
the user (Sample Parameters). It is important to note that too few Trace steps can result in fascicles lying outside the
nerve during deformation, while too many Trace steps can be unnecessarily time intensive. We’ve set the default to 36
because it tends to minimize both aforementioned issues for all sample sizes and types that we have tested.

The user may also visualize nerve deformation by setting the "deform_animate" argument to true in sample.
populate() (called in Runner’s run() method) (Sample Parameters). Visualizing sample deformation can be helpful
for debugging but increases computational load and slows down the deformation process significantly. When perform-
ing deformation on many slides, we advise setting this flag to false.

10.1.2 Simulation

(Pre-Java)

The user is unlikely to interface directly with Simulation’s resolve_factors() method as it operates behind the
scenes. The method searches through Sim for lists of parameters within the “fibers” and “waveform” JSON Objects
until the indicated number of dimensions (“n_dimensions” parameter in Sim, which is a handshake to prevent erroneous
generation of NEURON simulations) has been reached. The parameters over which the user has indicated to sweep in
Sim are saved to the Simulation class as a dictionary named “factors” with the path to each parameter in Sim.

The required parameters to define each type of waveform are in Sim Parameters. The Python Waveform class is config-
ured with Sim, which contains all parameters that define the Waveform. Since FEMs may have frequency-dependent
conductivities, the parameter for frequency of stimulation is optionally defined in Model (for frequency-dependent
material conductivities), but the pulse repetition frequency is defined in Sim as "pulse_repetition_freq". The
write_waveforms() method instantiates a Python Waveform class for each "wave_set" (i.e., one combination of
stimulation parameters).
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(Post-Java)

The unique combinations of Sim parameters are found with a Cartesian product from the listed values for individual
parameters in Sim: Waveforms Src*weights Fibersets. The pipeline manages the indexing of simulations. For ease of
debugging and inspection, into each n_sim/ directory we copy in a modified “reduced” version of Sim with any lists
of parameters replaced by the single list element value investigated in the particular n_sim/ directory.

The Simulation class loops over Model and Sim as listed in Run and loads the Python "sim.obj" object saved
in each simulation directory (sims/\<sim index\>/) prior to Python’s handoff() to Java. Using the Python
object for the simulation loaded into memory, the Simulation class’s method build_n_sims() loops over the
master_product_index (i.e., waveforms (src*weights fibersets)). For each master_product_index, the program
creates the n_sim file structure (sims/<sim index>/n_sims/<n_sim index>/data/inputs/ and sims/<sim
index>/n_sims/<n_sim index>/data/outputs/). Corresponding to the n_sim’s master_product_index,
files are copied into the n_sim directory for a “reduced” Sim, stimulation waveform, and fiber potentials. Additionally,
the program writes a HOC file (i.e., "launch.hoc") containing parameters for and a call to our Wrapper.hoc file
using the Python HocWriter class.

To conveniently submit the n_sim directories to a computer cluster, we created methods within Simulation named
export_n_sims(), export_run(), and export_neuron_files(). The method export_n_sims() copies
n_sims from our native hierarchical file structure to a target directory as defined in the system env.json config file
by the value for the "ASCENT_NSIM_EXPORT_PATH" key. Within the target directory, a directory named n_sims/ con-
tains all n_sims. Each n_sim is renamed corresponding to its sample, model, sim, and master_product_index
(<sample_index>_<model_index>_<sim_index>_<master_product_index>) and is therefore unique. Anal-
ogously, export_run() creates a copy of Run within the target directory in a directory named runs/. Lastly,
export_neuron_files() is used to create a copy of the NEURON *.hoc and *.mod files in the target directory
in directories named "HOC_Files" and "MOD_Files", respectively.

10.1.3 Fiberset

Runner’s run() method first loads JSON configuration files for Sample, Model, and Sim into memory and instanti-
ates a Python Sample class. The Sample instance produces two-dimensional CAD files that define nerve and fascicle
tissue boundaries in COMSOL from the input binary masks. The run() method also instantiates Python Simulation
classes using the Model and Sim configurations to define the coordinates of “fibersets” where “potentials” are sampled
in COMSOL to be applied extracellularly in NEURON and to define the current amplitude versus time stimulation
waveform used in NEURON (“waveforms”). The Simulation class is unique in that it performs operations both before
and after the program performs a handoff to Java for COMSOL operations. Before the handoff to Java, each Simulation
writes fibersets/ and waveforms/ to file, and after the Java operations are complete, each Simulation builds fold-
ers (i.e., n_sims/), each containing NEURON code and input data for simulating fiber responses for a single Sample,
Model, fiberset, waveform, and contact weighting. Each instance of the Simulation class is saved as a Python object
using Saveable (Python Utility Classes, which is used for resuming operations after the handoff() method to Java
is completed.

Within the write_fibers() method of the Python Simulation class, the Python Fiberset class is instantiated with
an instance of the Python Sample class, Model, and Sim. Fiberset’s generate() method creates a set of (x,y,z)-
coordinates for each Fiberset defined in Sim. The (x,y)-coordinates in the nerve cross-section and z-coordinates along
the length of the nerve are saved in fibersets/.

Fiberset’s method _generate_xy() (first character being an underscore indicates intended for use only by the Fiberset
class) defines the coordinates of simulated fibers in the cross-section of the nerve according to the "xy_parameters"
JSON Object in Sim (Sim Parameters). The pipeline defines (x,y)-coordinates of the fibers in the nerve cross-section
according to the user’s selection of sampling rules (CENTROID, UNIFORM_DENSITY, UNIFORM_COUNT, and WHEEL);
the pre-defined modes for defining fiber locations are easily expandable. To add a new mode for defining (x,y)-
coordinates, the user must add a "FiberXYMode" in src/utils/enums.py (Enums) and add an IF statement code
block in _generate_xy() containing the operations for constructing “points” (List[Tuple[float]]). The user
must add the parameters to define how fibers are placed in the nerve within the "xy_parameters" JSON Object in
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Sim. In Sim, the user may control the “plot” parameter (Boolean) in the “fibers” JSON Object to create a figure of
fiber (x,y)-coordinates on the slide. Alternatively, the user may plot a Fibserset using the plot_fiberset.py script
(Python Morphology Classes).

Fiberset’s private method _generate_z() defines the coordinates of the compartments of simulated fibers along the
length of the nerve based on global parameters in config/system/fiber_z.json and simulation-specific parameters
in the "fibers" JSON Object in Sim (i.e., "mode", "diameter", "min", "max", and "offset").

10.1.4 Python utility classes

Enums

In the Python portions of the pipeline we use Enums which are “. . . a set of symbolic names (members) bound to
unique, constant values. Within an enumeration, the members can be compared by identity, and the enumeration itself
can be iterated over.” Enums improve code readability and are useful when a parameter can only assume one value
from a set of possible values.

We store our Enums in src/utils/enums.py. While programming in Python, Enums are used to make interfac-
ing with our JSON parameter input and storage files easier. We recommend that as users expand upon ASCENT’s
functionality that they continue to use Enums, adding to existing classes or creating new classes when appropriate.

Configurable

Configurable is inherited by other Python classes in the ASCENT pipeline to grant access to parameter and data con-
figuration JSON files loaded to memory. Configurable is an important class for developers to understand because it is
the mechanism by which instances of our Python classes inherit their properties from JSON configuration files (e.g.,
sample.json, model.json, sim.json, fiber_z.json). The Configurable class takes three input parameters:

SetupMode (from Enums)

Either NEW or OLD which determines if Configurable loads a new JSON (from file) or uses data that has already been
created in Python memory as a dictionary or list, respectively.

ConfigKey (from Enums)

The ConfigKey indicates the choice of configuration data type and is also the name of the configuration JSON file (e.g.,
sample.json, model.json, sim.json, run.json, env.json).

Config

The Config input to Configurable can take one of three data types. If "SetupMode" is “OLD”, the value can be a
dictionary or list of already loaded configuration data. If "SetupMode" is “NEW”, the value must be a string of the
file path to the configuration file to be loaded into memory.
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Example use of Configurable

When the Sample class is instantiated in Runner, it inherits functionality from Configurable (see Sample constructor
__init__(self, exception_config: list) in src/core/sample.py).

After the Sample class is instantiated, the Sample configuration (index indicated in Run) is added to the Sample class
with:

sample.add(SetupMode.OLD, Config.SAMPLE, all_configs[Config.SAMPLE.value][0])

With the Sample configuration available to the Sample class, the class can access the contents of the JSON dictionary.
For example, in populate(), the Sample class gets the length of the scale bar from Sample with the following line:

self.search(Config.SAMPLE, ‘scale’, ‘scale_bar_length’)

Saveable

Saveable is a simple Python class that, when inherited by a Python class (e.g., Sample and Simulation) enables the class
to save itself using Saveable’s save() method. Using pickle.dump(), the object is saved as a Python object to file
at the location of the destination path, which is an input parameter to save().

10.2 Java Classes

Warning: This page of our documentation is not actively updated, as we work on migrating code documentation
to docstrings. Most of the information herein remains revelant, but please refer to the codebase for the most up to
date structure.

10.2.1 ModelWrapper Class

The ModelWrapper class in Java takes inputs of the ASCENT_PROJECT_PATH (env.json, JSON Configuration Files)
and a list of Run paths. ModelWrapper contains a COMSOL “model” object, model source directory (String), model
destination directory (String), an "IdentifierManager" (Java Utility Classes), and HashMaps with key-value pairs
linking COMSOL domains to unions of domains. ModelWrapper has accessor methods getModel() for retrieving the
model object, getRoot() for retrieving the project path’s root String, and getDest() for retrieving the default saving
destination String. ModelWrapper also has mutator methods for changing an instance’s root String (setRoot()) and
default saving destination String (setDest()).

ModelWrapper’s main() method starts an instance of COMSOL and loads Run, Sample, Model, and Sim configu-
rations as JSON Objects into memory. We developed Java class JSONio (Java Utility Classes) for reading and writing
JSON Objects to file.

Since each Run contains a list of Model and Sim configurations for a single Sample (note: n_sims/ are created for
all combinations of Model and Sim for the Sample in a Run), ModelWrapper iterates over Model configurations
(e.g., different cuff electrodes or material assignments) to define the FEM geometry, mesh, assign boundary conditions
and physics, and solve. The resulting FEM potentials are obtained for 1 mA applied to one of the electrode contacts
while the electric potential on the other contacts is floating (i.e., condition of continuity); this is repeated for each
contact to define the “bases” of the solution space [Pelot et al., 2018]. For each Sim, the program then creates a
superposition of the “bases” for extracellular potentials at the coordinates defined in fibersets/ and ss_coords/
(i.e., the coordinates along the length of the nerve used to “super-sample” potentials for later creating potentials/ without
the need for COMSOL). We wrote the code such that the program will continue with creating potentials/, ss_bases/
(i.e., the potentials along the length of the nerve corresponding 1:1 to the coordinates saved in ss_coords/, which are
added together according to the contact weighting defined by "active_srcs" in Sim to create potentials/ for specific
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fiber models), and NEURON simulations for any remaining Model indices even if the processes for a single Model
fails. For each Model, the program appends a Boolean to "models_exit_status" in Run (true if successful, false if
not successful).

ModelWrapper.addNerve()

The addNerve()method adds the nerve components to the COMSOL “model” object using Java. If the "NerveMode"
in Sample (“nerve”) is “PRESENT” (Sample Parameters) the program creates a part instance of epineurium us-
ing the createNervePartInstance() method in Part (src/model/Part.java). The addNerve() method
then searches through all directories in fascicles/ for the sample being modeled, and, for each fascicle, as-
signs a path for the inner(s) and outer in a HashMap. The HashMap of fascicle directories is then passed to the
createNervePartInstance() method in Part which adds fascicles to the COMSOL “model” object.

ModelWrapper.extractAllPotentials()

The user is unlikely to interface directly with ModelWrapper’s extractAllPotentials() method in Java as it op-
erates behind the scenes. The method takes input arguments for the project path and a run path. Using the run path,
the method loads Run, and constructs lists of Model and Sim for which it will call extractPotentials() for each
fiberset. COMSOL is expecting a (3 n) matrix of coordinates (Double[3][n]), defining the (x,y,z)-coordinates for each
of n points.

The Java COMSOL API methods setInterpolationCoordinates() and getData() for a model object are fast
compared to the time for a machine to load a COMSOL “model” object to memory from file. Therefore, the
extractAllPotentials() method is intentionally configured to minimize the number of times a “basis” COM-
SOL “model” object is loaded into memory. We accomplish this by looping in the following order: Model, bases,
Sims, fibersets (i.e., groups of fibers with identical geometry/channels, but different (x,y)-locations and/or longitudi-
nal offsets), then fibers. With this approach, we load each COMSOL “model” object only once (i.e., *.mph members
of bases/). Within the loop, the extractPotentials() method constructs the bases (double[basis index][sim in-
dex][fiberset index][fiber index]) for each model (units: Volts). With the bases in memory, the program constructs the
potentials for inputs to NEURON by combining bases by their contact weights and writes them to file within potentials/
(or ss_bases/), which mirrors fibersets/ (or ss_coords/) in contents.

ModelWrapper.addMaterialDefinitions()

The user is unlikely to interface directly with the addMaterialDefinitions() method in Java as it operates behind
the scenes. The method takes an input of a list of strings containing the material functions (i.e., endoneurium, per-
ineurium, epineurium, cuff “fill”, cuff “insulator”, contact “conductor”, and contact “recess”), Model, and a COM-
SOL ModelParamGroup for containing the material properties as a COMSOL “Parameters Group” under COM-
SOL’s “Global Definitions”. The method then loops over all material functions, creates a new material if it does
not yet exist as "mat<#>" using Part’s defineMaterial() method, and adds the identifier (e.g., “mat1”) to the
IdentifierManager.
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ModelWrapper.addCuffPartMaterialAssignment()

The user is unlikely to interface directly with the addCuffPartMaterialAssignment() method in Java as it operates
behind the scenes. The method loads in a cuff part primitive’s labels from its IdentifierManager. The method loops
over the list of material JSON Objects in the “preset” cuff configuration file. For each material function in the “preset”
cuff configuration file, the method creates a COMSOL Material Link to assign a previously defined selection in a cuff
part instance to a defined material.

ModelWrapper.addCuffPartMaterialAssignments()

The user is unlikely to interface directly with the addCuffMaterialAssignments() method in Java as it operates
behind the scenes. The method loops through all part instances in the cuff configuration file, which is linked to Model
by a string of its file name under the “preset” key, and calls the addCuffMaterialAssignment() method for each
part instance. As described in addCuffPartMaterialAssignment() above, a material is connected to the selection
within the part primitive by its label. In COMSOL, material links appear in the “Materials” node. COMSOL assigns
the material links in the order of the part instances defined in the “preset” cuff configuration file, which is important
since material links overwrite previous domain assignments. For this reason, it is important to list part instances in
“preset” cuff files in a nested order (i.e., the outermost domains first, knowing that domains nested in space within them
will overwrite earlier domain assignments).

10.2.2 Making geometries in COMSOL (Part class)

Part.createEnvironmentPartPrimitive()

The createEnvironmentPartPrimitive() method in Java (src/model/Part.java) creates a “part” within the
“Geometry Parts” node of the COMSOL “model” object to generalize the cylindrical medium surrounding the
nerve and electrode. Programmatically selecting domains and surfaces in COMSOL requires that geometry op-
erations be contributed to “selections” (csel<#>). In this simple example of a part primitive, the im.labels
String[] contains the string “MEDIUM” which is used to label the COMSOL selection (csel<#>) for the medium
domain by association with an IdentifierManager (Java Utility Classes). When the geometry of the primi-
tive is built, the resulting medium domain’s csel<#> can be accessed instead with the key “MEDIUM” in the
IdentifierManager, thereby improving readability and accessibility when materials and boundary conditions are
assigned in the createEnvironmentPartInstance() method. Furthermore, if the operations of a part primitive are
modified, the indexing of the csel<#> labels are automatically handled.

Part.createCuffPartPrimitive()

The createCuffPartPrimitive() method in Java (src/model/Part.java) is analogous to
createEnvironmentPartPrimitive(), except that it contains the operations required to define cuff part ge-
ometries, which are generally more complex. Examples of cuff part primitives include standard geometries for contact
conductors (e.g., Ribbon Contact Primitive, Wire Contact Primitive, Circle Contact Primitive, and Rectangular
Contact Primitive), cuff insulation (e.g., Tube Cuff), cuff fill (e.g., saline, mineral oil), and specific interactions of a
cuff insulator and electrode contact (e.g., LivaNova-inspired helical coil) (ASCENT Part Primitives).
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Part Instances

Part instances are a COMSOL Geometry Feature ("pi<#>") in the “Geometry” node based on user-defined input
parameters stored in Model and default parameters for “preset” cuffs. A part instance is an instantiation of a part
primitive previously defined in the COMSOL “model” object and will take specific form based on its input parameters.

Part.createEnvironmentPartInstance()

The createEnvironmentPartInstance()method in Java creates a “part instance” in COMSOL’s “Geometry” node
based on a primitive previously defined with createEnvironmentPartPrimitive(). This method just applies to
building the surrounding medium. The method takes inputs, with data types and examples in parentheses: instanceID
(String: "pi<#>"), instanceLabel (String: “medium”), mediumPrimitiveString (String: Key for the medium
part stored in the identifierManager), an instance of ModelWrapper, and Model as a JSON Object. Within the
“medium” JSON Object in Model, the parameters required to instantiate the environment part primitive are defined.

Part.createCuffPartInstance()

The createCuffPartInstance() method in Java is analogous to createEnvironmentPartInstance(), but
it is used to instantiate cuff part geometries. We decided to separate these methods since all products of
createCuffPartInstance() will be displaced and rotated by the same cuff shift (x,y,z) and rotation values.

Part.createNervePartInstance()

The createNervePartInstance() method in Part (src/model/Part.java) creates three-dimensional
representations of the nerve sample including its endoneurium, perineurium, and epineurium. The
createNervePartInstance() method defines domain and surface geometries and contributes them to COM-
SOL selections (lists of indices for domains, surfaces, boundaries, or points), which are necessary to later assign
physics properties.

Fascicles

ASCENT uses CAD sectionwise files (i.e., ASCII with .txt extension containing column vectors for x- and y-
coordinates) created by the Python Sample class to define fascicle tissue boundaries in COMSOL.

We provide the "use_ci" mode in Model (Model Parameters) to model the perineurium using COMSOL’s contact
impedance boundary condition for fascicles with only one inner (i.e., endoneurium) domain for each outer (i.e., per-
ineurium) domain (Perineurium Properties). If "use_ci" mode is true, the perineurium for all fascicles with exactly
one inner and one outer is represented with a contact impedance. The pipeline does not support control of using the
contact impedance boundary condition on a fascicle-by-fascicle basis.

The createNervePartInstance()method in Part (src/model/Part.java) performs a directory dive on the output
CAD files samples/<sample_index>/slides/<#>/<#>/sectionwise2d/fascicles/<outer,inners>/ from
the Sample class in Python to create a fascicle for each outer. Depending on the number of corresponding inners for
each outer saved in the file structure and the "use_ci" mode in Model, the program either represents the perineurium
in COMSOL as a surface with contact impedance (FascicleCI: Fascicles with one inner per outer and if "use_ci"
mode is true) or with a three-dimensional meshed domain (FascicleMesh: Fascicles with multiple inners per outer or
if "use_ci" parameter is false).
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Epineurium

The createNervePartInstance() method in Part (src/model/Part.java) contains the operations required to
represent epineurium in COMSOL. The epineurium cross-section is represented one of two ways:

• If deform_ratio in Sample is set to 1 and "DeformationMode" is not "NONE", the nerve shape matches the
"ReshapeNerveMode" from Sample (e.g., "CIRCLE"). (Sample Parameters). An epineurium boundary is then
created from this shape.

• Otherwise, the coordinate data contained in samples/<sample_index>/slides/<#>/<#>/
sectionwise2d/nerve/0/0.txt is used to create an epineurium boundary.

The epineurium boundary is then extruded into the third dimension. This is only performed if the "NerveMode" (i.e.,
“nerve”) in Sample is "PRESENT" and n.tif is provided (Sample Parameters).

Part.defineMaterial()

The user is unlikely to interface directly with the defineMaterial() method in Java as it operates behind the scenes
to add a new material to the COMSOL “Materials” node under “Global Definitions”. The method takes inputs of the
material’s identifier in COMSOL (e.g., “mat1”), function (e.g., cuff “fill”), Model, a library of predefined materials
(e.g., materials.json), a ModelWrapper instance, and the COMSOL ModelParamGroup for material conductivities.
The defineMaterial() method uses materials present in Model’s “conductivities” JSON Object to assign to each
material function in the COMSOL model (e.g., insulator, conductor, fill, endoneurium, perineurium, epineurium, or
medium). The material value for a function key in Model is either a string for a pre-defined material in materials.
json, or a JSON Object (containing unit, label, and value) for a custom material. Assigning material conductivities
to material functions in this manner enables control for a user to reference a pre-defined material or explicitly link
a custom material to a COMSOL model. In either the case of a predefined material in materials.json or custom
material in Model, if the material is anisotropic, the material value is assigned a string “anisotropic” which tells the
program to look for independent "sigma_x", "sigma_y", and "sigma_z" values in the material JSON Object.

10.2.3 Java utility classes

IdentifierManager

In working with highly customized COMSOL FEMs, we found it convenient to abstract away from the underlying
COMSOL indexing to improve code readability and enable scalability as models increase in geometric complexity. We
developed a class named IdentifierManager that allows the user to assign their own String to identify a COMSOL
geometry feature tag (e.g., wp<#>, cyl<#>, rev<#>, dif<#>) or selection (i.e., csel<#>).

We use IdentifierManagers to name and keep track of identifier labels within a PartPrimitive.
IdentifierManagers assigning tags for products of individual operations to a unique “pseudonym” in HashMaps as
a key-value pair. Additionally, we assign resulting selections ("csel<#>") to meaningful unique pseudonyms to later
assign to meshes, materials, or boundary conditions.

We keep a running total for tags of IdentifierStates (i.e., the total number of uses of an individual COMSOL tag)
and HashMap of IdentifierPseudonyms (i.e., a HashMap containing key (pseudonym) and value (COMSOL tag,
e.g., “wp1”)).

IdentifierManager has a method next() which takes inputs of a COMSOL tag (e.g., wp, cyl, rev, dif) or se-
lection (i.e., csel) without its index and a user’s unique pseudonym String. The method appends the next index
(starting at 1) to the COMSOL tag or selection and puts the COMSOL tag or selection and associated pseudonym
in the IdentifierPseudonyms HashMap. The method also updates the IdentifierStates HashMap total for the
additional instance of a COMSOL tag or selection.
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To later reference a COMSOL tag or selection, IdentifierManager has a get() method which takes the input of the
previously assigned pseudonym key and returns the COMSOL tag or selection value from the IdentifierPseudonyms
HashMap.

To accommodate mesh recycling (see ModelSearcher below), we save a COMSOL model’s IdentifierManagers
to later access selections for updating model materials and physics. Therefore, we developed IdentifierManager
methods toJSONObject() and fromJSONObject() which saves an IdentifierManager to a JSON file and loads
an IdentifierManager into Java from a JSON Object, respectively.

JSONio

JSONio is a convenient Java class used for reading and writing JSON Objects to file. The read() method takes an
input String containing the file path to read and returns a JSON Object to memory. The write() method takes an input
String containing the file path for the saving destination and a JSON Object containing the data to write to file.

ModelSearcher

The ModelSearcher class in Java is used to look for previously created FEM meshed geometries that can be repur-
posed. For example, if Model configurations differ only in their material properties or boundary conditions and the
previous Model’s *.mph file with the mesh (i.e., mesh.mph) was saved, then it is redundant to build and mesh the
same model geometry for a new Model configuration. The methods of the ModelSearcher class can save enormous
amounts of computation time in parameter sweeps of Model if the mesh can be recycled. The user is unlikely to in-
terface directly with this method as it operates behind the scenes, but if the user adds new parameter values to Model,
then the user must also add those values to config/templates/mesh_dependent_model.json to indicate whether
the added parameter value needs to match between FEMs to recycle the mesh (explained further below). Generally,
changes in geometry or meshing parameters need to match, but changes in material properties or boundary conditions
do not, since they do not change the FEM geometry.

Specifically, this class compares Model configurations to determine if their parameters are compatible to repurpose the
geometry and mesh from a previously generated COMSOL model using the meshMatch()method. The meshMatch()
method takes the inputs of a reference JSON (i.e., config/templates/mesh_dependent_model.json, see Mesh
Dependent Model) containing conditions for compatibility and a JSON Object for each of two Model configurations
to compare. The parameter keys correspond one-to-one in Model and mesh_dependent_model.json. However, in
mesh_dependent_model.json, rather than numerical or categorical values for each parameter key, the keys’ values
are a Boolean indicating if the values between two Model configurations must be identical to define a “mesh match”. For
two Model configurations to be a match, all parameters assigned with the Boolean true in mesh_dependent_model.
json must be identical. Model configurations that differ only in values for parameters that are assigned the Boolean
false are considered a mesh match and do not require that the geometry be re-meshed.

In the class’s searchMeshMatch()method, the program looks through all Model configurations under a given Sample
and applies the meshMatch() method. If a Model match is found, searchMeshMatch returns a Match class, which is
analogous to the ModelWrapper class, using the path of the matching Model with the fromMeshPath() method.

10.3 NEURON Files

10.3.1 NEURON Wrapper.hoc

The Wrapper.hoc file coordinates all program operations to create a biophysically realistic discrete cable fiber model,
simulate the fiber’s response to extracellular and intracellular stimulation, and record the response of the fiber. For
each fiber simulated in NEURON, outputs are saved to <n_sim_index>/data/outputs/. For simulations running
an activation or block threshold protocol, data outputs include threshold current amplitudes. For simulation of fiber
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response to set amplitudes, the user may save state variables at each compartment in NEURON to file at discrete times
and/or locations.

Create fiber model

Based on the flag for “fiber_type” set in launch.hoc (associated by a fiber type parameter in fiber_z.json and
FiberGeometryMode (Sim Parameters)), Wrapper.hoc loads the corresponding template for defining fiber geometry
discretization, i.e., "GeometryBuilder.hoc" for myelinated fibers and "cFiberBuilder.hoc" for unmyelinated
fibers. For all fiber types, the segments created and connected in NEURON have lengths that correspond to the coor-
dinates of the input potentials.

Intracellular stimulus

For simulations of block threshold, an intracellular test pulse is delivered at one end of the fiber to test if the cuff
electrode (i.e., placed between the intracellular stimulus and the site of detecting action potentials) is blocking ac-
tion potentials (Simulation Protocols). The intracellular stimulation parameters are defined in Sim and are defined as
parameters in NEURON within the launch.hoc file. The parameters in Sim control the pulse delay, pulse width,
pulse repetition frequency, pulse amplitude, and node/section index of the intracellular stimulus (Sim Parameters). For
simulating activation thresholds, the intracellular stimulation amplitude should be set to zero.

Extracellular stimulus

To simulate response of individual fibers to electrical stimulation, we use NEURON’s extracellular mechanisms to
apply the electric potential from COMSOL at each segment of the cable model as a time-varying signal. We load
in the stimulation waveform from a n_sim’s data/inputs/ directory using the VeTime_read() procedure within
ExtracellularStim_Time.hoc. The saved stimulation waveform is unscaled, meaning the maximum current mag-
nitude at any timestep is +/-1. Analogously, we read in the potentials for the fiber being simulated from data/inputs/
using the VeSpace_read() procedure within ExtracellularStim_Space.hoc.

Recording

The NEURON simulation code contains functionality ready to record and save to file the values of state variables at
discrete spatial locations for all times and/or at discrete times for all spatial locations (i.e., nodes of Ranvier for myeli-
nated fibers or sections for unmyelinated fibers) for applied extracellular potential, intracellular stimulation amplitude,
transmembrane potential, and gating parameters using Recording.hoc. The recording tools are particularly useful
for generating data to troubleshoot and visualize simulations.

RunSim

Our procedure RunSim is responsible for simulating the response of the model fiber to intracellular and extracellular
stimulation. Before the simulation starts, the procedure adds action potential counters to look for a rise above a threshold
transmembrane potential.

So that each fiber reaches a steady-state before the simulation starts, the RunSim procedure initializes the fiber by
stepping through large time steps with no extracellular potential applied to each compartment. RunSim then loops over
each time step, and, while updating the value of extracellular potential at each fiber segment, records the values of
flagged state variables as necessary.

At the end of RunSim’s loop over all time steps, if the user is searching for threshold current amplitudes, the method
evaluates if the extracellular stimulation amplitude was above or below threshold, as indicated by the presence or
absence of an action potential for activation and block thresholds, respectively.
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FindThresh

The procedure FindThresh performs a bisection search for activation and block thresholds (Simulation Protocols).

Save outputs to file

At the end of the NEURON simulation, the program saves state variables as indicated with saveflags, CPU time, and
threshold values. Output files are saved to the data/outputs/ directory within its n_sim folder.

10.3.2 NEURON launch.hoc

The launch.hoc file defines the parameters and simulation protocol for modeling fiber response to electrical stimu-
lation in NEURON and is automatically populated based on parameters in Model and Sim. The launch.hoc file is
created by the HocWriter class. Parameters defined in launch.hoc span the categories of: environment (i.e., tem-
perature from Model), simulation time (i.e., time step, duration of simulation from Sim), fiber parameters (i.e., flags
for fiber geometry and channels, number of fiber nodes from Model, Sim, and config/system/fiber_z.json), in-
tracellular stimulation (i.e., delay from start of simulation, amplitude, pulse duration, pulse repetition frequency from
Sim), extracellular stimulation (i.e., path to waveform file in n_sim/ folder which is always data/inputs/waveform.
dat), flags to define the model parameters that should be recorded (i.e., Vm(t), Gating(t), Vm(x), Gating(x) from Sim),
the locations at which to record the parameters (nodes of Ranvier for myelinated axons from Sim), and parameters for
the bisection search for thresholds (i.e., activation or block protocol, initial upper and lower bounds on the stimulation
amplitude for the bisection search, and threshold resolution for the bisection search from Sim). The launch.hoc file
loads Wrapper.hoc which calls all NEURON procedures. The launch.hoc file is created by the Python HocWriter
class, which takes inputs of the Sim directory, n_sim/ directory, and an exception configuration. When the HocWriter
class is instantiated, it automatically loads the fiber_z.json configuration file which contains all associated flags,
parameters, and rules for defining a fiber’s geometry and channel mechanisms in NEURON.
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Each execution of the ASCENT pipeline requires a Run JavaScript Object Notation (JSON) configuration file
(<run_index>.json) that contains indices for a user-defined set of JSON files. Specifically, a JSON file is defined
for each hierarchical domain of information: (1) Sample: for processing segmented two-dimensional transverse cross-
sectional geometry of a nerve sample, (2) Model (COMSOL parameters): for defining and solving three-dimensional
FEM, including geometry of nerve, cuff, and medium, spatial discretization (i.e., mesh), materials, boundary condi-
tions, and physics, and (3) Sim (NEURON parameters): for defining fiber models, stimulation waveforms, amplitudes,
and durations, intracellular test pulses (for example, when seeking to determine block thresholds), parameters for the
bisection search protocol and termination criteria for thresholds, and flags to save state variables. These configurations
are organized hierarchically such that Sample does not depend on Model or Sim, and Model does not depend on Sim;
thus, changes in Sim do not require changes in Model or Sample, and changes in Model do not require changes in
Sample.

11.1 Batching and sweeping of parameters

ASCENT enables the user to batch rapidly simulations to sweep cuff electrode placement on the nerve, material prop-
erties, stimulation parameters, and fiber types. The first process of ASCENT prepares ready-to-submit NEURON
simulations to model response of fibers to extracellular stimulation. The second process of ASCENT uses Python to
batch NEURON jobs to a personal computer or compute cluster to simulate fiber response to extracellular stimulation.
Each task submitted to a CPU simulates the response of a single fiber to either a set of finite amplitudes or a bisection
search for threshold of activation or block, therefore creating an “embarrassingly parallel” workload.

Groups of fibers from the same Sample, Model, Sim, waveform, contact weight (i.e., "src_weights" in Sim), and
fiberset (i.e., a group of fibers with the same geometry and channels and occupy different (x,y)-locations in the nerve
cross-section) are organized in the same n_sim/ directory.

A Run creates simulations for a single Sample and all pairs of listed Model(s) and Sim(s). A user can pass a list of Run
configurations in a single system call with "python run pipeline <run_indices>" to simulate multiple Sample
configurations in the same system call.

Sample and Model cannot take lists of parameters. Rather, if the user would like to assess the impact of ranges of
parameters for Sample or Model, they must create additional Sample and Model configuration files for each parameter
value.

Sim can contain lists of parameters in "active_srcs" (i.e., cuff electrode contact weightings), "fibers",
"waveform", and "supersampled_bases".
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Fig. 1: ASCENT (v1.0.0) pipeline file structure in the context of Sample (blue), Model (green), and Sim (purple)
configurations. JSON Overview describes the JSON configuration files and their contents, and JSON Parameters details
the syntax and data types of the key-value parameter pairs.
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• Spatially selective stimulation of the pig vagus nerve to modulate target effect versus side effect. https://doi.org/
10.1088/1741-2552/acb3fd

• Measuring and modeling the effects of vagus nerve stimulation on heart rate and laryngeal muscles. https:
//doi.org/10.1186/s42234-023-00107-4

• Fibers in smaller fascicles have lower activation thresholds with cuff electrodes due to thinner perineurium and
smaller cross-sectional area. https://doi.org/10.1088/1741-2552/acc42b

• Validated computational models predict vagus nerve stimulation thresholds in preclinical animals and humans.
https://doi.org/10.1088/1741-2552/acda64

• Computational Models of Compound Nerve Action Potential Recordings: Efficient Filter-Based Methods to
Quantify Impact of Materials, Conduction Distance, and Fiber Parameters in Rat Cervical Vagus Nerve. https:
//doi.org/10.1371/journal.pcbi.1011833
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FOURTEEN

ASCENT VALIDATION

14.1 Sim4Life validation

We designed test simulations to verify ASCENT’s activation thresholds. The verifications were performed by The
Foundation for Research Technologies in Society (IT’IS) with the Sim4Life (Zurich, Switzerland) simulation platform.
Running the following simulations required modification of the Sim4Life solver to implement the required electrical
anisotropy of tissue conductivities and the boundary condition to represent the thin layer approximation used to model
the perineurium.

14.1.1 Monofascicular rat nerve model

We validated activation thresholds for fibers seeded in a model of a rat cervical vagus nerve instrumented with a bipolar
cuff electrode (Figure A and B).

Fig. 1: Figure A. Raw histology image (r.tif), segmented histology (i.tif), and scalebar (s.tif) of a rat cervical vagus
nerve sample that served as inputs to define the cross-section of the nerve in the FEM.

The conductivity values applied to the rat cervical FEM are provided in Table A, and the boundary conditions applied
are provided in Table B.

Table A. Conductivity values for FEM of rat cervical vagus nerve. These values were also used in multifascicular nerve
model and human model verifications.

Table B. Boundary conditions used in FEM of rat cervical vagus nerve, multifascicular dummy nerve, and human
cervical vagus nerve.

We compared thresholds for 100 5.7 µm myelinated axons (MRG model) seeded in the cross-section of the nerve in
response to a single 100 µs duration monophasic rectangular pulse. The differences in thresholds between ASCENT
and IT’IS model implementations was <4.2% for all fibers, demonstrating strong agreement (Figure C).
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Fig. 2: Figure B. FEM of a rat cervical vagus nerve sample instrumented with a bipolar cuff electrode.

Fig. 3: Figure C. Comparison of activation thresholds for the rat cervical vagus nerve implementation in ASCENT and
Sim4Life.
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14.1.2 Multifascicular dummy nerve model

We validated activation thresholds for fibers seeded in a multifascicular dummy nerve instrumented with a bipolar cuff
electrode (Figure D and E). The segmented histology was created using our mock_morphology_generator.py script
(Mock Morphology).

Fig. 4: Figure D. Mock morphology inputs to the define tissue boundaries for a multifascicular dummy nerve for
validation with Sim4Life. Scale bar is 100 µm long. The nerve is a perfect circle (diameter = 250 µm, centered at
(x,y)=(0,0) µm). The inners are also perfect circles: (1) diameter = 50 µm, centered at (x,y)=(40,50) µm, (2) diameter
= 60 µm, centered at (x,y)=(-50,0) µm, and (3) diameter = 80 µm, centered at (x,y)=(20,-60) µm.

Fig. 5: Figure E. FEM of a multifascicular nerve sample instrumented with a bipolar cuff electrode.

The conductivity values applied to multifascicular nerve sample finite element model are provided in Table A, and the
boundary conditions applied are provided in Table B.

We seeded a single 5.7 µm diameter fiber in the center of each fascicle. Between the ASCENT and IT’IS implementa-
tions, there was less than a 3% difference in threshold to a single 100 µs duration monophasic rectangular pulse.
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14.1.3 Multifascicular human nerve model

We validated activation thresholds for fibers seeded in a multifascicular human cervical vagus nerve instrumented with
a LivaNova bipolar cuff electrode (Figure F and G). The segmented histology was created using Nikon NIS-Elements.

Fig. 6: Figure F. Raw histology image (r.tif), segmented inners (i.tif), segmented nerve (n.tif), and scale bar (s.tif)
of a human cervical vagus nerve sample that served as inputs to define the cross-section of the nerve in the FEM for
validation with Sim4Life.

Fig. 7: Figure G. FEM of a human cervical vagus nerve sample instrumented with a LivaNova cuff electrode.

The conductivity values applied to the human cervical vagus nerve sample finite element model are provided in Table
A, and the boundary conditions applied are provided in Table B.

We seeded 5.7 µm diameter fibers in each fascicle. Between the ASCENT and IT’IS implementations, there was less
than 2.5% difference to a single 100 µs duration monophasic rectangular pulse.
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14.2 Comparison of MRG fit to Bucksot 2019

14.2.1 Comparison of MRG fit to Bucksot et al. 2019

Fig. 8: Figure H. Our piecewise polynomial fits to published MRG fiber parameters compared to the Bucksot et al.
2019’s interpolation [Bucksot et al., 2019]. Single quadratic fits were used for all parameters except for internode
length, which has a linear fit below 5.643 µm (using MRG data at 2 and 5.7 µm) and a single quadratic fit at diameters
greater than or equal to 5.643 µm (using MRG data >= 5.7 µm); 5.643 µm is the fiber diameter at which the linear
and quadratic fits intersected. The fiber diameter is the diameter of the myelin. “Paranode 1” is the MYSA section,
“paranode 2” is the FLUT section, and “internode” is the STIN section. The axon diameter is the same for the node
of Ranvier and MYSA (“node diameter”), as well as for the FLUT and STIN (“axon diameter”). The node and MYSA
lengths are fixed at 1 and 3 m, respectively, for all fiber diameters.

14.3 Micro Leads cuff measurements

We collected and measured images of 200, 300, and 400 µm Micro-Leads Neuro cuffs (Somerville, MA) (Figure I and
Table C).

Table C. Cuff measurements (units: micrometer) for 200, 300, and 400 µm inner diameter Micro-Leads cuffs.

We also collected and measured images of 100 µm Micro-Leads cuffs, which had a different cross-section from the
larger diameter cuffs and are therefore reported separately (Figure J and Table D).

Table D. Cuff measurements (units: micrometer) for 100 µm inner diameter Micro-Leads cuffs.

For all “preset” cuff JSON files based on our Micro-Leads cuff measurements, we recessed the contacts by 50 µm.
Though we were not able to directly measure the recess depth of the contacts, Micro-Leads informed us that the surface
of the electrode metal could never be recessed by more than ~60-70 µm.

14.2. Comparison of MRG fit to Bucksot 2019 141



ASCENT, Release v1.3.1

Fig. 9: Figure I. Micro-Leads cuff measurements taken for 200, 300, and 400 µm inner diameter cuffs. Inner diameter
(ID) displacement is defined from the center of the circle of the outer diameter (OD) to the center of the semicircle for
the inner diameter.
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Fig. 10: Figure J. Micro-Leads cuff measurements taken for 100 µm inner diameter cuffs. Inner diameter (ID) displace-
ment is defined from the center of the circle of the outer diameter (OD) to the center of the semicircle for the inner
diameter.
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_HeatmapPlotter (class in src.core.plotter), 32
__init__() (src.core.plotter._HeatmapPlotter method),

32

A
add_colorbar() (src.core.plotter._HeatmapPlotter

method), 34
ap_loctime() (in module src.core.plotter), 34

C
create_cmap() (src.core.plotter._HeatmapPlotter

method), 33

D
determine_colors() (src.core.plotter._HeatmapPlotter

method), 34

G
get_objects() (src.core.plotter._HeatmapPlotter

method), 34

H
heatmaps() (in module src.core.plotter), 32

M
module

src.core.plotter, 32

P
plot() (src.core.plotter._HeatmapPlotter method), 33
plot_cuff_orientation()

(src.core.plotter._HeatmapPlotter method),
34

plot_inners_fibers()
(src.core.plotter._HeatmapPlotter method),
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S
set_ax() (src.core.plotter._HeatmapPlotter static

method), 34
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module, 32
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validate() (src.core.plotter._HeatmapPlotter method),
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