
ASCENT
Release v1.1.2

Musselman ED, Cariello JE, Grill WM, Pelot NA.

May 10, 2022

CONTENTS:

1 Metadata required to model an in vivo experiment using the ASCENT pipeline 3

2 Installation 5
2.1 Installing commercial software dependencies . 5
2.2 Installing ASCENT . 6
2.3 References . 7

3 ASCENT data hierarchy 9
3.1 Batching and sweeping of parameters . 10

4 Your first run 13
4.1 Task given to beta testers . 14

5 Helper Scripts 15
5.1 scripts/import_n_sims.py . 15
5.2 scripts/clean_samples.py . 15
5.3 scripts/tidy_samples.py . 15

6 Command-Line Arguments 17
6.1 run . 17
6.2 submit.py . 20

7 Template for methods reporting 23
7.1 Configuration files . 23
7.2 Nerve segmentation files . 24
7.3 Cuff . 24
7.4 Materials . 24
7.5 Domains . 25
7.6 Perineurium . 25
7.7 Mesh . 25
7.8 Solution . 25
7.9 HOC/MOD files . 25
7.10 Waveform . 25
7.11 NEURON simulations . 25
7.12 Analysis . 26
7.13 References . 26

8 Enums 27

9 JSON configuration files 29
9.1 User configuration files . 29

i

9.2 config/system/ . 32
9.3 References . 33

10 JSON file parameter guide 35
10.1 run.json . 35
10.2 sample.json . 38
10.3 mock_sample.json . 44
10.4 model.json . 49
10.5 sim.json . 57
10.6 query_criteria.json . 73
10.7 env.json . 74
10.8 exceptions.json . 75
10.9 materials.json . 76
10.10 ci_peri_thickness.json . 77
10.11 mesh_dependent_model.json . 78
10.12 References . 78

11 Python utility classes 79
11.1 Configurable . 79
11.2 Exceptionable . 80
11.3 Saveable . 80

12 Submitting NEURON jobs 81
12.1 Cluster submissions . 81

13 Morphology Files 83

14 Python MockSample class for creating binary masks of nerve morphology 85

15 Python classes for representing nerve morphology (Sample) 87
15.1 Trace . 87
15.2 Nerve . 88
15.3 Fascicle . 88
15.4 Slide . 89
15.5 Map . 89
15.6 Sample . 90
15.7 Deformable . 90
15.8 References . 92

16 Creating sample specific nerve morphologies in COMSOL 93
16.1 ModelWrapper.addNerve() . 93

17 Micro Leads cuff measurements 95

18 Library of part primitives for electrode contacts and cuffs 97

19 Creating custom preset cuffs from instances of part primitives 99

20 Creating new part primitives 103

21 Cuff placement on nerve 107

22 Fiberset 109

23 Implementation of NEURON fiber models 111
23.1 Myelinated fiber models . 111

ii

23.2 Unmyelinated Fiber Models . 113
23.3 References . 114

24 Simulation Protocols 115
24.1 Binary search . 115
24.2 Activation threshold protocol . 115
24.3 Block threshold protocol . 116
24.4 Response to set amplitudes . 116
24.5 References . 116

25 ModelWrapper Class 117
25.1 ModelWrapper . 117
25.2 References . 117

26 Making geometries in COMSOL (Part class) 119
26.1 Part.createEnvironmentPartPrimitive() . 119
26.2 Part.createCuffPartPrimitive() . 119
26.3 Part Instances . 119

27 Control of medium surrounding nerve and cuff electrode 121

28 Java utility classes 123
28.1 IdentifierManager . 123
28.2 JSONio . 123
28.3 ModelSearcher . 124

29 Defining and assigning materials in COMSOL 125
29.1 ModelWrapper.addMaterialDefinitions() . 125
29.2 Part.defineMaterial() . 125
29.3 ModelWrapper.addCuffPartMaterialAssignment() . 126
29.4 ModelWrapper.addCuffPartMaterialAssignments() . 126
29.5 Adding and assigning default material properties . 126
29.6 References . 127

30 Definition of perineurium 129
30.1 Definition of perineurium . 129
30.2 References . 130

31 Data interchange between COMSOL and NEURON 131

32 Python simulation class 133
32.1 (Pre-Java) . 133
32.2 (Post-Java) . 133

33 NEURON launch.hoc 135

34 NEURON Wrapper.hoc 137
34.1 Create fiber model . 137
34.2 Intracellular stimulus . 137
34.3 Extracellular stimulus . 137
34.4 Recording . 138
34.5 RunSim . 138
34.6 FindThresh . 138
34.7 Save outputs to file . 138

iii

35 Data analysis tools 139
35.1 Python Query class . 139
35.2 Video generation for NEURON state variables . 140

36 Convergence analysis example 141
36.1 Convergence analysis example . 141
36.2 References . 142

37 Sim4Life validation 143
37.1 Monofascicular rat nerve model . 143
37.2 Multifascicular dummy nerve model . 145
37.3 Multifascicular human nerve model . 146

38 Comparison of MRG fit to Bucksot 2019 147
38.1 Comparison of MRG fit to Bucksot et al. 2019 . 147
38.2 References . 148

39 ASCENT Troubleshooting Guide 149
39.1 General Troubleshooting Steps . 149
39.2 Installation Issues . 149
39.3 Pipeline Issues . 149
39.4 NEURON Issues . 150
39.5 Python Issues . 150

40 Paper References 151

iv

ASCENT, Release v1.1.2

Please check out the associated publication in PLOS Computational Biology!

Cite both the paper and the DOI for the release of the repository used for your work. We encourage you to clone
the most recent commit of the repository.

• Cite the paper: Musselman ED, Cariello JE, Grill WM, Pelot NA. ASCENT (Automated Simulations to
Characterize Electrical Nerve Thresholds): A Pipeline for Sample-Specific Computational Modeling
of Electrical Stimulation of Peripheral Nerves. PLoS Comput Biol [Internet]. 2021; Available from:
https://doi.org/10.1371/journal.pcbi.1009285

• Cite the code (use the DOI for the version of code used): Musselman ED, Cariello JE, Grill WM, Pelot
NA. ASCENT (Automated Simulations to Characterize Electrical Nerve Thresholds): A Pipeline for
Sample-Specific Computational Modeling of Electrical Stimulation of Peripheral Nerves. PLoS Comput
Biol [Internet]. 2021, DOI: 10.5281/zenodo.5500260

ASCENT is an open source platform for simulating peripheral nerve stimulation. To download the software, visit the
ASCENT GitHub repository.

CONTENTS: 1

https://doi.org/10.1371/journal.pcbi.1009285
https://doi.org/10.1371/journal.pcbi.1009285
https://zenodo.org/badge/latestdoi/379064819
https://github.com/wmglab-duke/ascent

ASCENT, Release v1.1.2

2 CONTENTS:

CHAPTER

ONE

METADATA REQUIRED TO MODEL AN IN VIVO EXPERIMENT USING
THE ASCENT PIPELINE

1. Detailed specifications / dimensions of the stimulating cuff electrode.

2. Transverse cross section of the nerve where the cuff is placed, stained to visualize the different tissue types (e.g.,
using Masson’s trichrome), with a scale bar (Fig 2 and S11 Text) or known scale (micrometers/pixel). Different
possible sources for defining the nerve sample morphology include:

a. For best specificity, the nerve would be sampled from the specific animal used in the experiment being modeled.
In this case, two colors of tissue dye may be used on the ventral and medial aspects of the nerve to maintain
orientation information.

b. Otherwise, a sample from another animal of the same species could be used at the correct nerve level.

c. If multiple samples from other animals are available, they could be used to generate a representa-
tive nerve model, knowing the range of morphological metrics across individuals using the scripts/
mock_morphology_generator.py script (S12 Text).

d. Lastly, published data could be used.

3. Orientation and rotation of the cuff on the nerve (e.g., cuff closure on the ventral side of the nerve).

4. Fiber diameters

a. Distributions of fiber diameters may be obtained from literature; otherwise, detailed electromicroscopic studies
are required.

b. The fiber diameters found in the target nerve that will be simulated in NEURON. All diameters or a subset of
diameters may be of interest.

c. Each fiber diameter of interest can be simulated for each fiber location of interest, or specific fiber diameters
can be simulated in specific locations.

5. Approximate tissue or fluids surrounding the nerve and cuff (e.g., muscle, fat, or saline).

6. Stimulation waveforms, pulse widths, and other parameters of the electrical signal.

7. If comparing to neural recordings: distance between the stimulation and recording cuffs.

8. If comparing to functional recordings (e.g., EMG): distance from the stimulation cuff to the location where the
nerve inserts into the muscle.

3

https://doi.org/10.1371/journal.pcbi.1009285.g002

ASCENT, Release v1.1.2

4 Chapter 1. Metadata required to model an in vivo experiment using the ASCENT pipeline

CHAPTER

TWO

INSTALLATION

2.1 Installing commercial software dependencies

It is highly recommended that you use a distribution of Anaconda/Miniconda with ASCENT. However, advanced users
who wish to use another Python distribution may.

First, these software packages must be manually installed:

• Miniconda/Anaconda We recommend that you install Miniconda (Miniconda is a stripped down version of Ana-
conda; Anaconda is optional for intermediate users). If you alread have an existing installation, there is no need
to reinstall.

– Recommended: Select add to path

– Recommended: Select “Install for individual user”

– https://docs.conda.io/en/latest/miniconda.html

– https://www.anaconda.com/products/individual

• Java SE Development Kit 8 (1.8) (need to register for a free account)

– https://www.oracle.com/java/technologies/javase/javase-jdk8-downloads.html

• Homebrew (Mac and Linux only)

– /bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/
HEAD/install.sh)"

– brew install wget

• COMSOL 5.4 or newer (requires purchase of license; only based package needed, which includes the COMSOL
Java API)

– Once COMSOL is installed, alter ‘File System Access’ permissions via File → Preferences → Security →
Methods and Java Libraries → File System Access → All Files.

– Open the COMSOL Server and log in with a username and password of your choosing (arbitrary and not
needed thereafter). This can be done by navigating to the bin/ directory in the COMSOL installation and
running comsolmphserver (Windows) or ./comsol server (MacOS/Linux).

– https://www.comsol.com/product-download

• NEURON 7.6 (newer versions have been released, but compatibility has yet to be confirmed; choose appropriate
installer depending on operating system; install auxiliary software as prompted by NEURON installer)

– https://neuron.yale.edu/ftp/neuron/versions/v7.6/

– If having issues with the NEURON installation, try running the compatibility troubleshooter.

5

https://docs.conda.io/en/latest/miniconda.html
https://www.anaconda.com/products/individual
https://www.oracle.com/java/technologies/javase/javase-jdk8-downloads.html
https://www.oracle.com/java/technologies/javase/javase-jdk8-downloads.html
https://docs.brew.sh/Installation
https://www.comsol.com/product-download
https://www.comsol.com/product-download
https://neuron.yale.edu/ftp/neuron/versions/v7.6/
https://neuron.yale.edu/ftp/neuron/versions/v7.6/

ASCENT, Release v1.1.2

In this stage of development, all programs/commands are run from a command line environment on both MacOS/Linux
and Windows operating systems (Bash terminal for MacOS/Linux, Powershell for Windows). For users less familiar
with this environment and for the quickest setup, it is suggested that the user install the package management system
Miniconda or Anaconda (if using MacOS, choose .pkg for ease of use).

Note that compiling NEURON files (when submitting sims) requires that the following packages be installed and on
your path (Mac and Linux ONLY): - openmpi-2.0.0 - libreadlines.so.6

If using MacOS to run local NEURON simulations, it may be necessary to install the Xcode Command Line Tools via
xcode-select --install, as well as Xquartz.

Users may also download a text editor or integrated development environment (IDE) of their choosing to view/edit code
(e.g., Atom, Visual Studio Code, IntelliJ IDEA). For Java code, full autocomplete functionality requires adding both the
path to the COMSOL installation ending in plugins as well as the path <ASCENT_PATH>/bin/json-20190722.jar
to the list of available libraries (usually from within the IDE’s project settings).

2.2 Installing ASCENT

1. First, download or clone the SPARC ASCENT pipeline from GitHub to a desired location that will be referenced
in step 3. Downloading is a much simpler process than cloning via Git, but does not easily allow for you to get
the most recent updates/bug fixes, nor does it allow you to suggest new features/changes. If you are interested in
either of these features, you should clone via Git rather than downloading.

• Downloading: Click the download button on GitHub and choose the location to which you would like to
save. Note that you will need to extract the files, as they will be downloaded in a compressed format. When
presented with a choice of compression format, “.zip” is a safe choice that most computers will be able to
extract.

• Cloning via Git:

1. You must first have an account with GitHub, and if you have been granted special permissions to the
code repository, you must use the email address to which those permissions were granted.

2. If you have not already done so, add an SSH key to your account (see instructions for GitHub). This
is a required standard authentication method.

3. In a Miniconda (or Git, for advanced users) command line environment, navigate to the location to
where you would like to clone the code repository (see instructions for navigating the file system from
the command line for Mac or Linux and Windows).

4. Clone the repository (see instructions for GitHub).

5. For more information on using Git, check out the official documentation.

2. Next, install ASCENT dependencies:

• Windows: Open the Anaconda Powershell Prompt from the Windows Start Menu as Administrator,
and use cd to navigate to the root directory of the pipeline. Then, run python run install. Note:
If reinstalling ASCENT after having changed your Anaconda/Miniconda installation, it may be nec-
essary to delete the #region conda initialize block from C:\Users\<username>\Documents\
WindowsPowerShell\profile.ps1 in order to use Anaconda Powershell Prompt.

• MacOS/Linux: Open Anaconda Prompt and use cd to navigate to the root directory of the pipeline. Then,
run python run install.

• For advanced users using their own (non-conda) Python distribution:

– From the ascent root directory execute python run install --no-conda

– From the ascent root directory execute pip install -r requirements.txt

6 Chapter 2. Installation

https://docs.conda.io/en/latest/miniconda.html
https://www.anaconda.com/products/individual
https://www.xquartz.org/releases/XQuartz-2.7.11.html
https://atom.io/
https://code.visualstudio.com/
https://www.jetbrains.com/idea/download/
https://github.com/wmglab-duke/ascent
https://github.com/wmglab-duke/ascent/archive/refs/heads/master.zip
https://docs.github.com/en/github/authenticating-to-github/connecting-to-github-with-ssh
https://www.redhat.com/sysadmin/navigating-linux-filesystem
https://blogs.umass.edu/Techbytes/2014/11/14/file-navigation-with-windows-command-prompt/
https://docs.github.com/en/repositories/creating-and-managing-repositories/cloning-a-repository
https://git-scm.com/doc

ASCENT, Release v1.1.2

– This method is highly discouraged as newer versions of packages/Python could potentially break AS-
CENT or introduce unexpected bugs

After confirming that you are in the correct directory, the script will install the required Python packages: Pillow [1],
NumPy [2], Shapely [3], Matplotlib [4], PyClipper [5], pygame [6], QuantiPhy [7], OpenCV [8], PyMunk [9], and
SciPy [10], pandas [11], and OpenPyXL [12]. It is crucial that all of the packages are installed successfully (check for
“successfully installed” for each package). The installation script will also create a shortcut to the newly configured
ASCENT Conda “environment” on your project path, which can be used for running the pipeline.

1. Then, configure the environment variables. This step may be completed several ways, described below.

• Recommended Setup: Open Anaconda prompt, navigate to the ASCENT root directory, and execute
python run env_setup. You will be prompted for the following paths:

– ASCENT_COMSOL_PATH: Path to the COMSOL installation, ending in the directory name “Mul-
tiphysics”, as seen in the template and S7.

– ASCENT_JDK_PATH: Path to the JDK 1.8 installation, ending in bin, as seen in the template and
S7. Hint: This is the correct path if the directory contains many executables (for Windows: java.exe,
etc.; MacOS/Linux: java, etc.).

– ASCENT_PROJECT_PATH: Path to the root directory of the pipeline, as chosen for step 1.

– ASCENT_NSIM_EXPORT_PATH: Path to the export location for NEURON “simulation” directories.
This path only depends on on the user’s desired file system organization.

• Manual Setup: Copy the file config/templates/env.json into config/system/env.json (new file).
This file holds important paths for software used by the pipeline (see env.json in S6 and S7). Then, edit
each of the four values as specified below. Use \\ in Windows and / in MacOS/Linux operating systems.
Note that the file separators are operating system dependent, so even if you installed in step 2 with Unix-like
command environment on a Windows machine (e.g., using Git Bash, Cygwin, or a VM with Ubuntu), you
will still need to choose the proper file separator for Windows, i.e., \\). See example env.json files for both
MacOS and Windows (S8 Text).

• Automatic setup: Upon the initiation of your first run, you will be prompted to enter the above four paths if
you did not choose to complete the manual setup. Enter them as prompted, following the guidelines detailed
above and exemplified in S7. Note that you may at any time update paths with python run env_setup
to rewrite this file if the information should change.

2.3 References

1. Clark A. Pillow: a modern fork of PIL — Pillow v2.3.0 (PIL fork) [Internet]. 2020 [cited 2020 Apr 20]. Available
from: https://pillow.readthedocs.io/en/2.3.0/

2. Oliphant TE. A Guide to NumPy [Internet]. Trelgol Publishing; 2006. Available from: https://books.google.
com/books?id=fKulSgAACAAJ

3. Gillies S. Shapely · PyPI [Internet]. 2019 [cited 2020 Apr 20]. Available from: https://pypi.org/project/Shapely/

4. Hunter JD. Matplotlib: A 2D Graphics Environment. Comput Sci Eng. 2007 May;9(3):90–5.

5. Johnson A, Chalton M, Treyer L, Ratajc G. pyclipper · PyPI [Internet]. 2019 [cited 2020 Apr 20]. Available
from: https://pypi.org/project/pyclipper/

6. Shinners P. Pygame Intro — pygame v2.0.0.dev5 documentation [Internet]. [cited 2020 Apr 20]. Available from:
https://www.pygame.org/docs/tut/PygameIntro.html

7. Kundert K. QuantiPhy: Physical Quantities — quantiphy 2.10.0 documentation [Internet]. 2020 [cited 2020 Apr
20]. Available from: https://quantiphy.readthedocs.io/en/stable/

2.3. References 7

https://gitforwindows.org/
https://www.cygwin.com/
https://ubuntu.com/
https://pillow.readthedocs.io/en/2.3.0/
https://books.google.com/books?id=fKulSgAACAAJ
https://books.google.com/books?id=fKulSgAACAAJ
https://pypi.org/project/Shapely/
https://pypi.org/project/pyclipper/
https://www.pygame.org/docs/tut/PygameIntro.html
https://quantiphy.readthedocs.io/en/stable/

ASCENT, Release v1.1.2

8. Bradski G, Daebler A. Learning OpenCV. Computer vision with OpenCV library. 2008 Jan 1;222–64.

9. Blomqvist V. pymunk · PyPI [Internet]. 2019 [cited 2020 Apr 20]. Available from: https://pypi.org/project/
pymunk/

10. Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy T, Cournapeau D, et al. SciPy 1.0: fundamental
algorithms for scientific computing in Python. Nat Methods [Internet]. 2020;17(3):261–72. Available from:
https://doi.org/10.1038/s41592-019-0686-2

11. The pandas development team. pandas-dev/pandas: Pandas [Internet]. Zenodo; 2020. Available from: https:
//doi.org/10.5281/zenodo.3509134

12. Gazoni E, Clark C. openpyxl - A Python library to read/write Excel 2010 xlsx/xlsm files [Internet]. 2020. Avail-
able from: https://openpyxl.readthedocs.io/en/stable/

8 Chapter 2. Installation

https://pypi.org/project/pymunk/
https://pypi.org/project/pymunk/
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.5281/zenodo.3509134
https://doi.org/10.5281/zenodo.3509134
https://openpyxl.readthedocs.io/en/stable/

CHAPTER

THREE

ASCENT DATA HIERARCHY

Each execution of the ASCENT pipeline requires a Run JavaScript Object Notation (JSON) configuration file
(<run_index>.json) that contains indices for a user-defined set of JSON files. Specifically, a JSON file is defined
for each hierarchical domain of information: (1) Sample: for processing segmented two-dimensional transverse cross-
sectional geometry of a nerve sample, (2) Model (COMSOL parameters): for defining and solving three-dimensional
FEM, including geometry of nerve, cuff, and medium, spatial discretization (i.e., mesh), materials, boundary condi-
tions, and physics, and (3) Sim (NEURON parameters): for defining fiber models, stimulation waveforms, amplitudes,
and durations, intracellular test pulses (for example, when seeking to determine block thresholds), parameters for the
binary search protocol and termination criteria for thresholds, and flags to save state variables. These configurations
are organized hierarchically such that Sample does not depend on Model or Sim, and Model does not depend on Sim;
thus, changes in Sim do not require changes in Model or Sample, and changes in Model do not require changes in
Sample (Figure A).

9

ASCENT, Release v1.1.2

Figure A. ASCENT pipeline file structure in the context of Sample (blue), Model (green), and Sim (purple) configu-
rations. S7 Text describes the JSON configuration files an their contents, and S8 Text details the syntax and data types
of the key-value parameter pairs.

3.1 Batching and sweeping of parameters

ASCENT enables the user to batch rapidly simulations to sweep cuff electrode placement on the nerve, material prop-
erties, stimulation parameters, and fiber types. The first process of ASCENT prepares ready-to-submit NEURON
simulations to model response of fibers to extracellular stimulation. The second process of ASCENT uses Python to
batch NEURON jobs to a personal computer or compute cluster to simulate fiber response to extracellular stimulation.
Each task submitted to a CPU simulates the response of a single fiber to either a set of finite amplitudes or a binary
search for threshold of activation or block, therefore creating an “embarrassingly parallel” workload.

Groups of fibers from the same Sample, Model, Sim, waveform, contact weight (i.e., “src_weights” in Sim), and

10 Chapter 3. ASCENT data hierarchy

ASCENT, Release v1.1.2

fiberset (i.e., a group of fibers with the same geometry and channels and occupy different (x,y)-locations in the nerve
cross section) are organized in the same n_sim/ directory.

A Run creates simulations for a single Sample and all pairs of listed Model(s) and Sim(s). A user can pass a list of Run
configurations in a single system call with “python run pipeline <run_indices>” to simulate multiple Sample
configurations in the same system call.

Sample and Model cannot take lists of parameters. Rather, if the user would like to assess the impact of ranges of
parameters for Sample or Model, they must create additional Sample and Model configuration files for each parameter
value.

Sim can contain lists of parameters in “active_srcs” (i.e., cuff electrode contact weightings), “fibers”,
“waveform”, and “supersampled_bases”.

3.1. Batching and sweeping of parameters 11

ASCENT, Release v1.1.2

12 Chapter 3. ASCENT data hierarchy

CHAPTER

FOUR

YOUR FIRST RUN

How to run the ASCENT pipeline, after completing the initial setup.

The user provides binary mask inputs for the nerve and saves Sample (i.e., sample.json), Model(s) (i.e., model.
json), and Sim(s) (i.e., sim.json) JSON configurations in directories, relative to the project path defined in config/
system/env.json. The directory names must use indices that are consistent with the indices of Sample, Model(s),
and Sim(s) defined in Run.

1. Masks: User populates input/<NAME>/ (e.g., “Rat1-1”, which must match “sample” parameter in Sample) with
binary masks of neural tissue boundaries using either:

a. Segmented histology (S11 Text and Fig 2), or

b. Running the mock_morphology_generator.py script (S12 Text).

i. Copy `mock_sample.json` from `config/templates/` to
`config/user/mock_samples/` as `<mock_sample_index>.json`
and update file contents, including the “NAME” parameter
used to construct the destination path for the output binary
masks, which serve as inputs to the pipeline.

ii. Call `“python run mock_morphology_generator
<mock_sample_index>”`.

iii. The program saves a copy of the user’s `mock_sample.json` and
binary masks in `input/<NAME>/`.

2. For one Sample: User copies sample.json from config/templates/ to samples/<sample_index>/ as
sample.json and edits its contents to define the processing of binary masks to generate the two-dimensional
cross section geometry of the nerve in the FEM. In particular, change “sample” to match <NAME>, the
“scale_bar_length” parameter for s.tif (i.e., length in microns of your scale bar, which is oriented hor-
izontally), and “mask_input” in Sample accordingly (S8 Text). You have now created the directory for your
first sample: sample #<sample_index>. Note: in lieu of a scale bar image, the user may optionally specify
the microns/pixel ratio for the sample mask(s).

3. For each Model: User copies model.json from config/templates/ to samples/<sample_index>/
models/<model_index>/ as model.json and edits its contents to define the three dimensional FEM.

a. Preset: User defines a new “preset” cuff JSON file, which contains instructions for creating their cuff electrode,
and saves it as config/system/cuffs/<preset_str>.json.

b. The <preset_str>.json file name must be assigned to the “preset” parameter in Model (S8 Text).

4. For each Sim: User copies sim.json from config/templates/ to config/user/sims/ as <sim_index>.
json and edits its contents to inform the NEURON simulations (S8 Text).

13

https://doi.org/10.1371/journal.pcbi.1009285.g002

ASCENT, Release v1.1.2

5. Run: User copies run.json from config/templates/ to config/user/runs/ as <run_index>.json and
edits the indices for the created Sample, Model(s), and Sim(s) configurations (S8 Text).

6. The pipeline is run from the project path (i.e., the path to the root of the ASCENT pipeline, which
is defined in config/system/env.json) with the command “python run pipeline <run indices>”,
where <run indices> is a list of space-separated Run indices (if multiple Sample indices, one Run
for each). The pipeline outputs ready-to-submit NEURON simulations and associated Run file(s) to the
“ASCENT_NSIM_EXPORT_PATH” directory as defined in config/system/env.json (S8 Text). NEURON sim-
ulations are run locally or submitted to a computer cluster with the command “python submit.py <run
indices>” from the export directory.

4.1 Task given to beta testers

We sent the pipeline code, manuscript, and the following task to beta testers (both within our lab at Duke and externally).
Following this task and verifying the threshold value is a suitable way to familiarize yourself with the ASCENT code
and documentation.

We provided segmented histology of a rat cervical vagus nerve (examples/beta_task/). Please simulate activation
thresholds in response to a charge balanced, biphasic pulse (PW1 = 100 s, interphase gap of 100 s, PW2 = 400 s) using
Purdue’s bipolar cuff design.

• MRG 8.7 m diameter fibers

• Fibers placed in nerve cross section using a 6 spoke wheel with 2 fibers per spoke

• Custom material for surrounding medium with isotropic conductivity 1/20 [S/m]

After your thresholds have been computed, build a heatmap for the threshold at each fiber location using the example
script: examples/analysis/heatmap_monofasc.py.

Through this exercise, you will:

• Place and name binary masks of the nerve morphology in the proper directories

– Binary masks provided

• Define and assign a custom material

• Build and solve a finite element model

• Define placement of fibers in the nerve cross section

• Parameterize your custom stimulation waveform

• Simulate activation thresholds for a specific fiber model by submitting NEURON simulations locally or to a
computer cluster

• Generate a heatmap of fiber activation thresholds

For the following exercise, we ask that you please attempt to accomplish the prescribed modeling tasks with the paper
and associated supplemental documentation as your primary reference.

Check: Threshold for inner0_fiber0 (thresh_inner0_fiber0.dat) should be -0.027402 mA

We provided Sample, Model, and Sim JSON files for the solution in examples/beta_task/.

14 Chapter 4. Your first run

CHAPTER

FIVE

HELPER SCRIPTS

We provide scripts to help users efficiently manage data created by ASCENT. Run all of these scripts from the directory
to which you installed ASCENT (i.e., "ASCENT_PROJECT_PATH" as defined in config/system/env.json). For
more usage information, including optional arguments, see Command-Line Arguments.

5.1 scripts/import_n_sims.py

To import NEURON simulation outputs (e.g., thresholds, recordings of Vm) from your ASCENT_NSIM_EXPORT_PATH
(i.e., <"ASCENT_NSIM_EXPORT_PATH" as defined in env.json>/n_sims/<concatenated indices as
sample_model_sim_nsim>/data/outputs/) into the native file structure (see “ASCENT data hierarchy”,
samples/<sample_index>/models/<model_index>/sims/<sim_index>/n_sims/<n_sim_index>/data/
outputs/) run this script from your "ASCENT_PROJECT_PATH".

python run import_n_sims <list of run indices>

The script will load each listed Run configuration file from config/user/runs/<run_index>.json to determine
for which Sample, Model(s), and Sim(s) to import the NEURON simulation data. This script will check for any missing
thresholds and skip that import if any are found. Override this by passing the flag --force. To delete n_sim folders
from your output directory after importing, pass the flag --delete-nsims. For more information, see Command-Line
Arguments.

5.2 scripts/clean_samples.py

If you would like to remove all contents for a single sample (i.e., samples/<sample_index>/) EXCEPT a list of files
(e.g., sample.json, model.json) or EXCEPT a certain file format (e.g., all files ending .mph), use this script. Run
this script from your "ASCENT_PROJECT_PATH". Files to keep are specified within the python script.

python run clean_samples <list of sample indices>

5.3 scripts/tidy_samples.py

If you would like to remove ONLY CERTAIN FILES for a single sample (i.e., samples/<sample_index>/), use this
script. This script is useful for removing logs, runtimes, special, and *.bat or *.sh scripts. Run this script from your
"ASCENT_PROJECT_PATH". Files to remove are specified within the python script.

python run tidy_samples <list of sample indices>

15

ASCENT, Release v1.1.2

16 Chapter 5. Helper Scripts

CHAPTER

SIX

COMMAND-LINE ARGUMENTS

6.1 run

ASCENT: Automated Simulations to Characterize Electrical Nerve Thresholds

usage: run [-h] [-v] [-V] [-l {runs,samples,sims}]
{pipeline,install,env_setup,clean_samples,import_n_sims,mock_morphology_

→˓generator,tidy_samples}
...

6.1.1 Positional Arguments

script Possible choices: pipeline, install, env_setup, clean_samples, import_n_sims,
mock_morphology_generator, tidy_samples

which script to run

6.1.2 Named Arguments

-v, --verbose verbose printing

Default: False

-V, --version print version

-l, --list Possible choices: runs, samples, sims

List all available indices for the specified option

6.1.3 Sub-commands:

pipeline

main ASCENT pipeline

run pipeline [-h]
[-b {pre_geom_run,post_geom_run,pre_java,post_mesh_distal,pre_mesh_distal,

→˓post_material_assign,pre_loop_currents,pre_mesh_proximal,post_mesh_proximal,pre_solve}]
[-w WAIT_FOR_LICENSE] [-P {cuff_only,nerve_only}]

(continues on next page)

17

ASCENT, Release v1.1.2

(continued from previous page)

[-E {overwrite,error,selective}] [-e] [-r] [-c | -C]
run_indices [run_indices ...]

Positional Arguments

run_indices Space separated indices to run the pipeline over

Named Arguments

-b, --break-point Possible choices: pre_geom_run, post_geom_run, pre_java, post_mesh_distal,
pre_mesh_distal, post_material_assign, pre_loop_currents, pre_mesh_proximal,
post_mesh_proximal, pre_solve

Point in pipeline to exit and continue to next run

-w, --wait-for-license Wait the specified number of hours for a comsol license to become available.

-P, --partial-fem Possible choices: cuff_only, nerve_only

Only generate the specified geometry.

-E, --export-behavior Possible choices: overwrite, error, selective

Behavior if n_sim export encounters extant data. Default is selective.

-e, --endo-only-solution Store basis solutions for endoneurial geometry ONLY

Default: False

-r, --render_deform Pop-up window will render deformation operations

Default: False

-c, --comsol-progress Print COMSOL progress to stdout

Default: False

-C, --comsol-progress-popup Show COMSOL progress in a pop-up window

Default: False

install

install ASCENT

run install [-h] [--no-conda]

18 Chapter 6. Command-Line Arguments

ASCENT, Release v1.1.2

Named Arguments

--no-conda Skip conda portion of installation

Default: False

env_setup

Set ASCENT environment variables

run env_setup [-h]

clean_samples

Remove all files except those specified from Sample directories

run clean_samples [-h] sample_indices [sample_indices ...]

Positional Arguments

sample_indices Space separated sample indices to clean

import_n_sims

Move NEURON outputs into ASCENT directories for analysis

run import_n_sims [-h] [-f | -D] run_indices [run_indices ...]

Positional Arguments

run_indices Space separated run indices to import

Named Arguments

-f, --force Import n_sims even if all thresholds are not found

Default: False

-D, --delete-nsims After importing delete n_sim folder from NSIM_EXPORT_PATH

Default: False

6.1. run 19

ASCENT, Release v1.1.2

mock_morphology_generator

Generate mock morpology for an ASCENT run

run mock_morphology_generator [-h] mock_sample_index

Positional Arguments

mock_sample_index Mock Sample Index to generate

tidy_samples

Remove specified files from Sample directories

run tidy_samples [-h] sample_indices [sample_indices ...]

Positional Arguments

sample_indices Space separated sample indices to tidy

6.2 submit.py

ASCENT: Automated Simulations to Characterize Electrical Nerve Thresholds

usage: submit.py [-h] [-p PARTITION] [-n NUM_CPU] [-m JOB_MEM] [-j NUM_JOBS]
[-l] [-s] [-S SLURM_PARAMS] [-L | -C]
run_indices [run_indices ...]

6.2.1 Positional Arguments

run_indices Space separated indices to submit NEURON sims for

6.2.2 Named Arguments

-p, --partition If submitting on a cluster, overrides slurm_params.json

-n, --num-cpu For local submission: set number of CPUs to use, overrides run.json

-m, --job-mem For cluster submission: set amount of RAM per job (in MB), overrides
slurm_params.json

-j, --num-jobs For cluster submission: set number of jobs per array, overrides slurm_params.json

-l, --list-runs List info for available runs

-s, --skip-summary Begin submitting fibers without asking for confirmation

Default: False

20 Chapter 6. Command-Line Arguments

ASCENT, Release v1.1.2

-S, --slurm-params For cluster submission: string for additional slurm parameters (enclose in quotes)

-L, --local-submit Set submission context to local, overrides run.json

Default: False

-C, --cluster-submit Set submission context to cluster, overrides run.json

Default: False

6.2. submit.py 21

ASCENT, Release v1.1.2

22 Chapter 6. Command-Line Arguments

CHAPTER

SEVEN

TEMPLATE FOR METHODS REPORTING

For uses of ASCENT, either stand-alone in its publicly available form, as a starting point upon which further work
is developed, or as a component of a system (e.g., connected with other organ models or engineering optimization
techniques), we ask that the author(s) cite the ASCENT publication and indicate the release of ASCENT used (e.g.,
ASCENT v1.0.0).

The following guidelines are to help users adhere to FAIR principles when using ASCENT and thereby enable model
reproducibility and reduce duplication of efforts [1]. With published modeling studies using ASCENT, we ask that
users provide all code and input files required to reproduce their work.

To streamline dissemination of work, upon acceptance of a manuscript to a journal, we encourage users to either
make their fork/branch of the ASCENT repository publicly available, or to make a “Merge Request” to the ASCENT
GitHub repository (i.e., if your developments would be of general interest to ASCENT users) so that we can review
and incorporate your changes to our public repository.

7.1 Configuration files

Provide the JSON configuration files used as inputs to ASCENT.

• sample.json

• model.json

• sim.json

• mock_sample.json (if applicable)

• map.json (if serial nerve sections are used to create 3D representation of the nerve in future ASCENT releases)

• ci_peri_thickness.json (if using new relationships between perineurium thickness and inner diameter not already
in the ASCENT repository)

• materials.json (if using new materials that have been added to this file and referenced in model.json rather than
explicitly defined in model.json)

• fiber_z.json (if using fiber models with ultrastructure that is not integrated in the ASCENT repository)

23

https://doi.org/10.1371/journal.pcbi.100928

ASCENT, Release v1.1.2

7.2 Nerve segmentation files

Indicate the software and methods used to generate the binary image inputs (e.g., Adobe Photoshop).

If defining nerve geometry with segmented binary images of nerve microanatomy, indicate the methods for the tech-
nique used to obtain the nerve images (i.e., histology, Micro-CT, ultrasound, etc.) and to segment the tissue boundaries.

If referencing a dataset of published nerve microanatomy, cite the original source, include statements to justify the
relevance of the source to define nerve tissue boundaries for your model(s), and report high-level statements for the
methods used. Indicate the methods used to segment the tissue boundaries.

If using our mock_morphology_generator.py script, please indicate so, and make a statement regarding the methods
used to populate the nerve with fascicles. Present either your own data or cite previously published literature used to
inform the nerve diameter and the number, size, and placement of fascicle(s) in the nerve.

Explicitly indicate in your methods if you used any correction for tissue shrinkage in preparing nerve inputs for modeling
in the FEM. If so, cite literature justifying your assumption. Additionally, indicate any methods used to deform the
nerve to fit within the cuff electrode in ASCENT.

Provide the image files used as inputs to ASCENT.

• n.tif (if applicable)

• i.tif or o.tif, both i.tif and o.tif, or c.tif (as applicable)

• s.tif

• a.tif (if applicable)

7.3 Cuff

If the “preset” cuff configuration file used to define the cuff electrode is not publicly available in the ASCENT repository,
please provide it with your materials.

If new part primitives were created to represent the cuff electrode (S18 Text), please include copies of Java code that
perform the FEM operations for the new parts. These sections of code should be from src/model/Part.java as “cases”
(i.e., in switch-case statement) for new parts in the createCuffPartPrimitive() and createCuffPartInstance() methods.

Indicate how the cuff was placed on the nerve. Specifically, state the longitudinal placement of the cuff and how the cuff
rotation was determined (e.g., the cuff rotation modes, or used a.tif to rotate the cuff to replicate in vivo cuff rotation).

7.4 Materials

Cite the original source for each conductivity value used to define materials as indicated in materials.json and/or
model.json.

24 Chapter 7. Template for methods reporting

ASCENT, Release v1.1.2

7.5 Domains

Report the model length and radius, along with a statement to justify your model’s dimensions (i.e., convergence
studies). Report the presence and dimensions of any cuff fill domains (e.g., saline, encapsulation, or mineral oil between
the nerve and the cuff electrode).

7.6 Perineurium

Report if a thin-layer approximation or a finite thickness material was used to define the perineurium. If a thin-layer
approximation was used, indicate how the thickness of the perineurium was determined (e.g., measured from histology,
or previously published relationship between inner diameter and perineurium thickness).

7.7 Mesh

Indicate the method used to mesh the FEM in addition to the number of domain elements. Include a statement to justify
your model’s meshing parameters (i.e., convergence studies) (S34 Text).

7.8 Solution

Indicate that the FEM was solved using Laplace’s equation once for each contact delivering 1 mA of current. Indicate
if the outer surfaces of the model were grounded or set to insulation.

7.9 HOC/MOD files

If using novel fiber model ultrastructure or channel mechanisms, please share the code required to implement it in
ASCENT.

7.10 Waveform

State the stimulation waveform shape, timestep, and simulation time used. Be certain that the timestep chosen is short
enough to simulate accurately fiber response to stimulation.

7.11 NEURON simulations

If computing thresholds of activation and/or block, state the search algorithm used (e.g., binary search) and the exit
criteria (e.g., tolerance).

7.5. Domains 25

ASCENT, Release v1.1.2

7.12 Analysis

State the methods and software tools used to analyze and present data.

7.13 References

1. Wilkinson MD, Dumontier M, Aalbersberg IJJ, Appleton G, Axton M, Baak A, et al. The FAIR Guiding
Principles for scientific data management and stewardship. Sci data. 2016 Mar;3:160018. Available from:
https://doi.org/10.1038/sdata.2016.18

26 Chapter 7. Template for methods reporting

https://doi.org/10.1038/sdata.2016.18

CHAPTER

EIGHT

ENUMS

In the Python portions of the pipeline we use Enums which are “. . . a set of symbolic names (members) bound to
unique, constant values. Within an enumeration, the members can be compared by identity, and the enumeration itself
can be iterated over.” Enums improve code readability and are useful when a parameter can only assume one value
from a set of possible values.

We store our Enums in src/utils/enums.py. While programming in Python, Enums are used to make interfac-
ing with our JSON parameter input and storage files easier. We recommend that as users expand upon ASCENT’s
functionality that they continue to use Enums, adding to existing classes or creating new classes when appropriate.

27

https://docs.python.org/3/library/enum.html

ASCENT, Release v1.1.2

28 Chapter 8. Enums

CHAPTER

NINE

JSON CONFIGURATION FILES

We store parameters in JSON configuration files because the JSON format is accessible, readable, and well-documented
for metadata interchange. The configuration files inform the pipeline in its operations and provide a traceable history
of the parameters used to generate data.

For each JSON file, we provide a brief overview, a statement of where the file must be placed in the directory structure,
and a description of its contents. For a detailed description of each JSON file (i.e., which parameters are required or
optional, known value data types, and known values), see S8 Text. Though JSON does not allow comments, users
may want to add notes to a JSON file (e.g., to remember what a Sample, Model, or Sim file was used to accomplish).
The user can simply add a key to the JSON file that is not in use (e.g., “notes”) and provide a value (String) with a
message.

9.1 User configuration files

9.1.1 run.json

The run.json file is passed to pipeline.py to instruct the program which Sample, Model(s), and Sim(s) to run. All
run.json files are stored in the config/user/runs/ directory. Since each Sample, Model, and Sim is indexed, their
indices are used as the identifying values in run.json. Additionally, the file contains break points that enable the user
to terminate the pipeline at intermediate processes, flags for user control over which COMSOL files are saved, flags
to selectively build a “debug_geom.mph” file of just the nerve or cuff electrode, and flags to recycle previous meshes
where appropriate. Lastly, the run.json file reports which Model indices were generated successfully in COMSOL
and indicates if the user is submitting the NEURON jobs to a SLURM cluster or locally.

9.1.2 sample.json

An example Sample configuration file is stored in config/templates/ for users to reference when defining their
own input nerve morphology from histology or from the mock nerve morphology generator (S8 and S12 Text). A
user’s sample.json file is saved in the samples/<sample_index>/ directory. The file contains information about
the sample’s properties and how to process the nerve morphology before placing the nerve in a cuff electrode. The
pipeline’s processes informed by Sample output the Python object sample.obj.

The information in Sample must parallel how the sample morphology binary images are saved on the user’s ma-
chine (sample name, path to the sample). The user must define the “mask_input” parameter in Sample to in-
dicate which set of input masks will be used. Sample also contains parameters that determine how the morphol-
ogy is processed before being represented in the FEM such as shrinkage correction (“shrinkage”), required min-
imum fascicle separation (“boundary_separation”), presence of epineurium (“nerve”), perineurium thickness
(“ci_perineurium_thickness”), deformation method (“deform”), reshaped nerve profile (“reshape_nerve”),

29

ASCENT, Release v1.1.2

and parameters for specifying CAD geometry input file formats for nerve morphology (“write”). Sample also con-
tains information about the mask scaling (i.e. “scale_bar_length” if supplying a binary image of a scale bar or, if
no scale bar image, “scale_ratio”).

The value of the “ci_perineurium_thickness” in Sample refers to a JSON Object in config/system/
ci_peri_thickness.json that contains coefficients for linear relationships between inner diameter and per-
ineurium thickness (i.e., thkperi,inner = a*(diameterinner) + b). In ci_peri_thickness.json, we pro-
vided a “PerineuriumThicknessMode” named “GRINBERG_2008”, which defines perineurium thickness as
3% of inner diameter [1], and relationships for human, pig, and rat vagus nerve perineurium thickness (i.e.,
“HUMAN_VN_INHOUSE_200601”, “PIG_VN_INHOUSE_200523”, and “RAT_VN_INHOUSE_200601”) [2]. As addi-
tional vagus nerve morphometry data become available, users may define perineurium thickness with new models
by adding the coefficients to this JSON file.***

9.1.3 mock_sample.json

The mock_sample.json file, which is stored in the file structure in config/user/mock_samples/
<mock_sample_index>/, is used to define binary segmented images that serve as inputs to the pipeline. In
the “populate” JSON Object, the user must define the “PopulateMode” (e.g., EXPLICIT, TRUNCNORM, UNIFORM
defined by the “mode” parameter), which defines the process by which the nerve morphology is defined in the
MockSample Python class. Each “PopulateMode” requires a certain set of parameters to define the nerve and to
define and place the fascicles; the set of parameters for each “PopulateMode” are defined in config/templates/
mock_sample_params_all_modes.json.

Probabilistic “PopulateModes” (i.e., TRUNCNORM, UNIFORM) populate an elliptical nerve with elliptical fascicles
of diameter and eccentricity defined by a statistical distribution. Since the nerve morphology parameters are defined
probabilistically, a “seed” parameter is required for the random number generator to enable reproducibility. The fas-
cicles are placed at randomly chosen locations within the nerve using a disk point picking method; the fascicles are
placed at a rotational orientation randomly chosen from 0-360o. If a fascicle is placed in the nerve without maintain-
ing a user-defined “min_fascicle_separation” distance from the other fascicles and the nerve, another randomly
chosen point within the nerve is chosen until either a location that preserves a minimum separation is achieved or the
program exceeds a maximum number of attempts (“max_attempt_iter”).

The EXPLICIT “PopulateMode” populates an elliptical nerve with elliptical fascicles of user-defined sizes, locations,
and rotations. The program validates that the defined fascicle ellipses are at least “min_fascicle_separation”
distance apart; otherwise, if the conditions are not met, the program throws an error.

9.1.4 model.json

An example Model configuration file is stored in config/templates/ for users to reference when creating their
own FEMs. As such, model.json, which is stored in the file structure in samples/<sample_index>/models/
<model_index>/, contains information to define an FEM uniquely. Model defines the cuff electrode geometry and
positioning, the simulated environment (e.g., surrounding medium dimensions, material properties (including temper-
ature and frequency factors of material conductivity), and physics), the meshing parameters (i.e., how the volume is
discretized), and output statistics (e.g., time required to mesh, mesh element quality measures).

30 Chapter 9. JSON configuration files

ASCENT, Release v1.1.2

9.1.5 sim.json

An example Sim configuration file is stored in config/templates/ for users to reference when creating their own
simulations of fiber responses to stimulation for a sample in a FEM. All simulation configuration files are stored in the
config/user/sims/ directory. Sim defines fiber types, fiber locations in the FEM, fiber length, extracellular (e.g.,
pulse repetition frequency) and intracellular stimulation, and input parameters to NEURON (e.g., parameters to be
saved in the output, binary search algorithm bounds and resolution). Since users may want to sweep parameters at the
Sim configuration level (e.g., fiber types, fiber locations, waveforms), a pared down copy of Sim that contains a single
value for each parameter (rather than a list) is saved within the corresponding n_sims/ directory (S8 Text). These pared
down files are provided for convenience, so that the user can inspect which parameters were used in a single NEURON
simulation, and they do not hold any other function within the pipeline.

9.1.6 query_criteria.json

In data analysis, summary, and plotting, the user needs to inform the program which output data are of interest.
The query_criteria.json file stores the “criteria” for a user’s search through previously processed data. The
query_criteria.json file may be used to guide the Query class’s searching algorithm in the run() method. We
suggest that all query_criteria.json-like files are stored in the config/user/query_criteria/ directory; how-
ever, the location of these files is arbitrary, and when initializing the Query object, the user must manually pass in the
path of either the query_criteria.json-like file or the hard-coded criteria as a Python dictionary. An instance of the
Query class contains the “criteria” and an empty _result, which is populated by Query’s run() method with found
indices of Sample, Model, and Sim that match the criteria given.

Query’s run() method loops through all provided indices (i.e., Sample, Model, Sim) in the query criteria, and calls
_match() when a possible match is found. Note that the presence of an underscore in the _match() method name
indicates that it is for internal use only (not to be called by external files). The _match() method compares its two
inputs, (1) query_criteria.json and (2) either Sample (i.e., sample.json), Model (i.e., model.json), or Sim
(sim.json); the two JSON files are loaded into memory as Python dictionaries. The method returns a Boolean indi-
cating if the input configuration file satisfies the restricted parameter values defined in query_criteria.json. The
user may explicitly specify the indices of the Sample, Model, and Sim configuration files of interest simultaneously
with restricted criteria for specific parameter values. The indices added will be returned in addition to matches found
from the search criteria in the Sample, Model, and Sim criteria JSON Objects.

The query_criteria.json file contains JSON Objects for each of the Sample, Model, and Sim configuration files.
Within each JSON Object, parameter keys can be added with a desired value that must be matched in a query result.
If the parameter of interest is found nested within a JSON Object structure or list in the configuration file, the same
hierarchy must be replicated in the query_criteria.json file.

The query_criteria.json parameter “partial_matches” is a Boolean indicating whether the search should
return indices of Sample, Model, and Sim configuration files that are a partial match, i.e., the parameters in
query_criteria.json are satisfied by a subset of parameters listed in the found JSON configuration.

The query_criteria.json parameter “include_downstream” is a Boolean indicating whether the search should
return indices of downstream (Sample>Model>Sim) configurations that exist if match criteria are not provided for
them. For example, if only criteria for a Sample and Model are provided, Query will return the indices of Sample
and Model that match the criteria. In addition, the indices of the Sims downstream of the matches are included
in the result if “include_downstream” is true (since the user did not specify criteria for Sim). Otherwise, if
“include_downstream” is false, no Sim indices are returned.

9.1. User configuration files 31

ASCENT, Release v1.1.2

9.2 config/system/

9.2.1 env.json

The env.json file stores the file paths for:

• COMSOL

• Java JDK

• The project path (i.e., the path to the root of the ASCENT pipeline)

• Destination directory for NEURON simulations to run (this could be the directory from which the user calls
NEURON, or an intermediate directory from which the user will move the files to a computer cluster)

When the pipeline is run, the key-value pairs are stored as environment variables so that they are globally accessible.

9.2.2 exceptions.json

The exceptions.json file contains a list of exceptions that are intentionally thrown in the Python portion of the
pipeline. Each error has its own “code” (index), and “text” (informative message hinting to the reason the program
failed). As developers add new methods to Python classes that inherit the Exceptionable class, appending errors onto
exceptions.json that are called from Python code file (i.e., self.throw(<exception index>)) will help give
informative feedback to the user.

9.2.3 materials.json

The materials.json file contains default values for material properties that can be assigned to each type of neural
tissue, each electrode material, the extraneural medium, and the medium between the nerve and inner cuff surface. The
materials are referenced by using their labels in the “conductivities” JSON Object of Model.

9.2.4 fiber_z.json

The fiber_z.json file defines z-coordinates to be sampled along the length of the FEM for different fiber types to
be simulated in NEURON. In some instances, the section lengths are a single fixed value. In other instances, such as
the MRG model [3], the section lengths are defined for each fiber diameter in a discrete list. Section lengths can also
be a continuous function of a parameter, such as fiber diameter, defined as a mathematical relationship in the form of a
string to be evaluated in Python. Additionally, the file contains instructions (e.g., flags) that corresponds to fiber-type
specific operations in NEURON.

9.2.5 ci_perineurium_thickness.json

In the case of fascicles with exactly one inner perineurium trace for each outer perineurium trace, to reduce the required
computational resources, the pipeline can represent the perineurium using a thin layer approximation in COMSOL
(S28 Text). Specifically, if Model’s “use_ci” parameter is true, the perineurium is modeled as a surface with a
sheet resistance (termed “contact impedance” in COMSOL) defined by the product of the resistivity and thickness.
The thickness is calculated as half of the difference between the effective circular diameters of the outer and inner
perineurium traces. If each fascicle is only defined by a single trace (rather than inner and outer perineurium traces),
the user chooses from a list of modes in Sample for assigning a perineurium thickness (e.g., 3% of fascicle diameter
[1], “ci_perineurium_thickness” parameter in Sample).

32 Chapter 9. JSON configuration files

ASCENT, Release v1.1.2

9.2.6 mesh_dependent_model.json

Since meshing can take substantial time and RAM, if the FEM has the same geometry and mesh parameters as a previous
model, this JSON file allows the mesh to be reused if the mesh.mph file is saved. In mesh_dependent_model.json,
the keys match those found in Model, however, instead of containing parameter values, each key’s value is a Boolean
indicating true if the parameter value must match between two Model configurations to recycle a mesh, or false if a
different parameter value would not prohibit a mesh be reused. The mesh_dependent_model.json file is used by
our ModelSearcher Java utility class (S26 Text).

9.3 References

1. Grinberg Y, Schiefer MA, Tyler DJ, Gustafson KJ. Fascicular perineurium thickness, size, and position affect
model predictions of neural excitation. IEEE Trans Neural Syst Rehabil Eng. 2008 Dec;16(6):572–81. Available
from: https://doi.org/10.1109/tnsre.2008.2010348

2. Pelot NA, Goldhagen GB, Cariello JE, Musselman ED, Clissold KA, Ezzell JA, et al. Quantified Morphol-
ogy of the Cervical and Subdiaphragmatic Vagus Nerves of Human, Pig, and Rat. Front Neurosci [Internet].
2020;14:1148. Available from: https://www.frontiersin.org/article/10.3389/fnins.2020.601479

3. McIntyre CC, Richardson AG, Grill WM. Modeling the excitability of mammalian nerve fibers: influence of
afterpotentials on the recovery cycle. J Neurophysiol. 2002 Feb;87(2):995–1006. Available from: https://doi.
org/10.1152/jn.00353.2001

9.3. References 33

https://doi.org/10.1109/tnsre.2008.2010348
https://www.frontiersin.org/article/10.3389/fnins.2020.601479
https://doi.org/10.1152/jn.00353.2001
https://doi.org/10.1152/jn.00353.2001

ASCENT, Release v1.1.2

34 Chapter 9. JSON configuration files

CHAPTER

TEN

JSON FILE PARAMETER GUIDE

Notes:

See S7 Text for a general overview of the contents and usage of each of the following JSON files used in ASCENT.

“//" is not valid JSON syntax; comments are not possible in JSON. However, we sparingly used this notation in the
JSON examples below to provide context or more information about the associated line. Each value following a key
in the syntax denotes the type of the value, not its literal value: “[<Type X>, . . .]” syntax indicates that the type is an
array of Type X. Occasionally, a single value may be substituted for the list if only a single value is desired, but this
functionality differs between keys, so be sure to read the documentation before attempting for any given key-value pair.
If a parameter is optional, the entire key-value can be omitted from the JSON file and the default value will be used.

For calculated values, the user can either keep the key with a dummy value or remove the key entirely when setting up
JSON files for a pipeline run.

JSON Object names, keys, and values (e.g., filename strings) are case-sensitive.

The order of key-value pairs within a JSON Object does not matter. Saving/loading the file to/from memory is likely
to reorder the contents of the file.

10.1 run.json

1. Named file: config/user/runs/<run_index>.json

2. Purpose: Instructs the pipeline on which input data and user-defined parameters to use in a single program “run”,
where one “run” configuration serves a single Sample and a list of Model(s) and Sims(s). Enables operational
control (breakpoints, which FEM files to save/discard). Keeps track of successful/failed FEMs in Java.

3. Syntax: To declare this entity in config/user/runs/, use the following syntax:

{
"pseudonym": String,
"submission_context": String,
"sample": Integer, // note, only one value here!
"models": [Integer, ...], // pipeline will create all pairwise combos of ...
"sims": [Integer, ...], // ... models and sims
"recycle_meshes": Boolean,
"break_points": {
"pre_java": Boolean, // before Runner’s handoff() method to Java/COMSOL
"pre_geom_run": Boolean, // immediately before geometry operations
"post_geom_run": Boolean, // immediately after geometry operations
"pre_mesh_proximal": Boolean, // immediately before mesh prox operations
"post_mesh_proximal": Boolean, // immediately post mesh prox operations

(continues on next page)

35

ASCENT, Release v1.1.2

(continued from previous page)

"pre_mesh_distal": Boolean, // immediately before mesh dist operations
"post_mesh_distal": Boolean, // immediately post mesh dist operations
"post_material_assign": Boolean, // immediately post assigning materials
"pre_loop_currents": Boolean // immediately before solving for bases

},
"models_exit_status": [Boolean, ...], // one entry for each Model
"endo_only_solution": Boolean,
"keep": {
"debug_geom": Boolean,
"mesh": Boolean,
"bases": Boolean

},
"export_behavior": String,
"partial_fem": {
"cuff_only": Boolean,
"nerve_only": Boolean

},
"local_avail_cpus": Integer,
"popup_plots": Boolean,
"override_compiled_mods": Boolean

}

4. Properties:

"pseudonym": This value (String) informs pipeline print statements, allowing users to better keep track of the
purpose of each configuration file. Optional.

“submission_context”: The value (String) of this property tells the system how to submit the n_sim NEU-
RON jobs based on the computational resources available. Value can be “cluster”, “local”, or “auto” (if “auto”,
“hostname_prefix” is required). Required.

"hostname_prefix": This value (String) tells the program what prefix to look out for in the “HOSTNAME”
environment variable. If the “HOSTNAME” begins with the “hostname prefix”, submission context is set to
cluster, otherwise it is set to local (does not change the value in the configuration file). Example: if your high
performance computing cluster hostname always begins with ourclust, e.g. ourclust-node-15, ourclust-login-20,
etc., you would set the value of this variable to “ourclust.” If the “HOSTNAME” environment variable is not
present, the program defaults to “local.” Required if “submission_context” is “auto”, otherwise Optional.

“sample”: The value (Integer) of this property sets the sample configuration index (“Sample”). Note that this
is only ever one value. To loop Samples, create a Run for each. Required.

“models”: The value ([Integer, . . .]) of this property sets the model configuration indices (“Model”). Required.

“sims”: The value ([Integer, . . .]) of this property sets the simulation configuration indices (“Sim”). Required.

“recycle_meshes”: The value (Boolean) of this property instructs the pipeline to search for mesh matches for
recycling a previously generated FEM mesh if set to true. If this property is not specified, the default behavior
of the pipeline is false, meaning that it will not search for and recycle a mesh match (see ModelSearcher (S26
Text) and mesh_dependent_model.json (S7 Text)). Optional.

“break_points”: The value (Boolean) of each breakpoint results in the program terminating or continuing
with the next Model index. In Runner, the program checks that at most one breakpoint is true and throws an
exception otherwise. The breakpoint locations enable the user to run only up to certain steps of the pipeline,
which can be particularly useful for debugging. If a breakpoint is not defined, the default behavior is false (i.e.,
the pipeline continues beyond the breakpoint). Note: specifying a break point via command line arguments will
override any break points set in your run config. Optional.

36 Chapter 10. JSON file parameter guide

ASCENT, Release v1.1.2

"endo_only_solution": The value (Boolean) determines what data the electric currents solution will save.
Since fibers are sampled from the endoneurium, after the solution is completed, only the endoneurial Ve data is
necessary to run fiber simulations. If "endo_only_solution" is true, then COMSOL will save ONLY the
Ve data for the endoneurium. If false, COMSOL will save Ve data for the entire model. Recommended value
is true unless you intend to generate plots or other analyses which require Ve data for geometry other than the
endoneurium. If this key-value pair is not present, defaults to false. Note: this parameter only affects storage
space after the solution has completed, and will not have any affect on memory usage or solution time.

“models_exit_status”: The value ([Boolean, . . .]) of this property indicates if Java successfully made the
FEMs for the corresponding model indices (“models” property). The user does not need to include this property
before performing a run of the pipeline, as it is automatically added in Java (COMSOL FEM processes) and is then
used to inform Python operations for making NEURON simulations. The value will contain one value for each
Model listed in “models”. If a Model fails, the pipeline will skip it and proceed to the next one. Automatically
added.

“keep”: The value (Boolean) of each property results in the program keeping or deleting large COMSOL *.mph
files for the “debug_geom.mph”, “mesh.mph” and bases/ for a given Model. If a keep property is not defined,
the default behavior is true and the associated *.mph file is saved. If “mesh.mph” is saved, the file can later be
used if another Model is a suitable “mesh match” and “recycle_meshes” is true (see ModelSearcher (S26
Text) and mesh_dependent_model.json (S7 Text)). If bases/ are saved, a new Sim for a previously computed
Sample and Model can be probed along new fibersets/ to create potentials/. Optional.

"export_behavior": The value (String) instructs the pipeline how to behave if an export n_sim directory
(i.e., ASCENT_NSIM_EXPORT_PATH/n_sims/) already exists. There are three options: "selective" is the
default behavior, output directories which already exist will be skipped, but any which do not exist will be
generated, "overwrite" will remove the extant directory, and generate a new clean output directory in its place,
"error" instructs the pipeline to exit if any export n_sim directory is found to already exist.

“partial_fem”: The value (Boolean) of each property results in the program terminating after building the
COMSOL FEM geometry for only the cuff (“cuff_only”) or only the nerve (“nerve_only”). The program
terminates after the “debug_geom.mph” file is created. If the “partial_fem” JSON Object is not included, the
value of each Boolean is treated as false, meaning that the “debug_geom.mph” file will contain the nerve and
cuff electrode. An error is thrown if the user may set both values for “cuff_only” and “nerve_only” to true.
To build the geometry of both the cuff and the nerve, but not proceed with meshing or solving the FEM, the user
should set the value for “post_geom_run” under “break_points” to true. Overriden if the "partial_fem"
command line argument is used. Optional.

“local_avail_cpus”: The value (Integer) sets the number of CPUs that the program will take if the
“submission_context” is “local”. We check that the user is not asking for more than one less that the number
of CPUs of their machine, such that at least one CPU is left for the machine to perform other processes. Optional,
but if using submitting locally, the program will take all CPUs except 1 if this value is not defined.

“popup_plots”: The value (Boolean) will instruct the pipeline to display plots (e.g. sample plot, fiberset plot,
waveform plot) in a popup window. This is in addition to saving the plots in the relevant folders (i.e., the sample
and sim folders).

“override_compiled_mods”: The value (Boolean) indicates if the program will override previously compiled
*.mod files (i.e. files defining channel mechanisms in NEURON) with each system call of submit.py. Optional,
but if the key is omitted the program will not override previously compiled *.mod files.

5. Example:

{
"pseudonym": "My example run",
"submission_context": “cluster”,
"sample": 62,
"models": [0],

(continues on next page)

10.1. run.json 37

ASCENT, Release v1.1.2

(continued from previous page)

"sims": [99],
"recycle_meshes": true,
"break_points": {
"pre_java": false,
"pre_geom_run": false,
"post_geom_run": true,
"pre_mesh_proximal": false,
"post_mesh_proximal": false,
"pre_mesh_distal": false,
"post_mesh_distal": false,
"post_material_assign": false,
"pre_loop_currents": false

},
"endo_only_solution":true,
"models_exit_status": [true],
"keep": {
"debug_geom": true,
"mesh": true,
"bases": true

},
"partial_fem": {
"cuff_only": false,
"nerve_only": false

},
"export_behavior": "selective",
"local_avail_cpus": 3,
“popup_plots”: true,
"override_compiled_mods": false

}

10.2 sample.json

1. Named file: samples/<sample_index>/sample.json

2. Purpose: Instructs the pipeline on which sample-specific input data and user-defined parameters to use for pro-
cessing nerve sample morphology inputs in preparation for 3D representation of the sample in the FEM (Sample)
(S7 and S14 Text).

3. Syntax: To declare this entity in samples/<sample_index>/sample.json, use the following syntax:

{
"sample": String,
"pseudonym": String,
"sex": String,
"level": String,
"samples_path": [
String

],
"scale": {
"scale_bar_length": Double,
"scale_ratio": Double,

(continues on next page)

38 Chapter 10. JSON file parameter guide

ASCENT, Release v1.1.2

(continued from previous page)

"shrinkage": Double
},
"boundary_separation": {
"fascicles": Double,
"nerve": Double

},
"modes": {
"mask_input": String,
"scale_input": String,
"nerve": String,
"deform": String,
"ci_perineurium_thickness": String,
"reshape_nerve": String,
"shrinkage_definition": String

},
"smoothing": {
"nerve_distance": Double,
"fascicle_distance": Double

},
"image_preprocessing": {
"fill_holes": Boolean,
"object_removal_area": Integer

},
"morph_count": Integer,
"deform_ratio": Double,
"plot": Boolean,
"plot_folder": Boolean,
"render_deform": Boolean,
"Morphology": {
"Nerve": {
"Area": Double

},
"Fascicles": [
{
"outer": {
"area": Double,
"x": Double,
"y": Double,
"a": Double,
"b": Double,
"angle": Double

},
"inners": [
{
"area": Double,
"x": Double,
"y": Double,
"a": Double,
"b": Double,
"angle": Double

},
...

(continues on next page)

10.2. sample.json 39

ASCENT, Release v1.1.2

(continued from previous page)

]
},
...

]
}

}

4. Properties:

“sample”: The value (String) of this property sets the sample name/identifier (e.g., “Rat1-1”) to relate to book-
keeping for input morphology files (S3 Text Figure A). The value must match the directory name in input/
<NAME>/ that contains the input morphology files. Required.

"pseudonym": This value (String) informs pipeline print statements, allowing users to better keep track of the
purpose of each configuration file. Optional.

“sex”: The value (String) of this property assigns the sex of the sample. Optional, for user records only.

“level”: The value (String) of this property assigns the location of the nerve sample (e.g., cervical, abdominal,
pudendal). Optional, for user records only.

“samples_path”: The value ([String, . . .]) is the path to the directory containing input morphology files for all
samples for a given project. Required.

“scale”

• “scale_bar_length”: The value (Double, units: micrometer) is the length of the scale bar in the binary
image of the scale bar provided (s.tif, note that the scale bar must be oriented horizontally). Required if
scale_input = “MASK”.

• “scale_ratio”: The value (Double, units: micrometers/pixel) is the ratio of micrometers per pixel for
the input mask(s). Required if scale_input = “RATIO”.

• “shrinkage”: The value (Double) is the shrinkage correction for the nerve morphology binary images
provided as a decimal (e.g., 0.20 results in a 20% expansion of the nerve, and 0 results in no shrinkage
correction of the nerve). Required, must be greater than 0. Note: Shrinkage correction scaling is linear (i.e.
a nerve with diameter d and area a scaled by scaling factor s will have a final diameter of d_final=d*(1+s)
and a final area a_final = a*(1+s)2)

“boundary_separation”

• “fascicles”: The value (Double, units: micrometer) is the minimum distance required between bound-
aries of adjacent fascicles (post-deformation, see Deformable in S13 Text). Required for samples with
multiple fascicles.

– Note that this is a distinct parameter from “min_fascicle_separation” in mock_sample.json,
which controls the minimum distance between fascicles in the binary image mask inputs to the pipeline,
which is later deformed to fit in the cuff electrode using Deformable (S13 Text).

• “nerve”: The value (Double, units: micrometer) is the minimum distance required between the boundaries
of a fascicle and the nerve (post-deformation, see Deformable in S13 Text). Required if “nerve” in Sample
is “PRESENT”.

“modes”:

• “mask_input”: The value (String) is the “MaskInputMode” that tells the program which segmented
histology images to expect as inputs for fascicles. Required.

– As listed in Enums (S6 Text), modes include

1. “INNERS”: Program expects segmented images of only inner fascicle boundaries.

40 Chapter 10. JSON file parameter guide

ASCENT, Release v1.1.2

2. “INNER_AND_OUTER_SEPARATE”: Program expects segmented image of inners in one file and
segmented image of outers in another file.

3. “INNER_AND_OUTER_COMPILED”: Program expects a single segmented image containing bound-
aries of both inners and outers.

• “scale_input”: The value (String) is the “ScaleInputMode” that tells the program which type of scale
input to look for.

– As listed in Enums (S6 Text), known “ScaleInputModes” include

1. “MASK”: The program will determine image scale from the user’s scale bar mask image and the
scale_bar_length parameter.

2. “RATIO”: The program will use the scale directly specified in scale_ratio. If using this option,
a scale bar image need not be provided.

• “nerve”: The value (String) is the “NerveMode” that tells the program if there is an outer nerve boundary
(epineurium) segmented image to incorporate into the model. Required.

– As listed in Enums (S6 Text), known modes include

1. “PRESENT”: Program expects a segmented image for a nerve (n.tif) to incorporate into the
model. The value must be PRESENT if multifascicular nerve, but can also be PRESENT if mono-
fascicular.

2. “NOT_PRESENT”: Program does not try to incorporate a nerve boundary into the model. The value
cannot be NOT_PRESENT if multifascicular nerve, but can be NOT_PRESENT if monofascicular.

• “deform”: The value (String) is the “DeformationMode” that tells the program which method to
use to deform the nerve within the cuff. If the “NerveMode” (i.e., “nerve” parameter) is defined as
“NOT_PRESENT” then the “DeformationMode” (i.e., “deform” parameter) must be “NONE”. Required.

– As listed in Enums (S6 Text), known modes include

1. “NONE”: The program does not deform the nerve when it is placed in the cuff electrode. In
the pipeline’s current implementation, this should be the value for all nerve samples without
epineurium (i.e., “NOT_PRESENT” for “nerve”).

2. “PHYSICS”: The program uses a physics-based deformation of the nerve to the final inner profile
of the nerve cuff, morphing from the original trace towards a circular trace. In the pipeline’s current
implementation, this is the only “DeformationMode” for deforming compound nerve samples.
See “deform_ratio” below; if deform_ratio = 0, then the original nerve trace is used and if
deform_ratio = 1, then the nerve trace will be made circular.

• “ci_perineurium_thickness”: The value (String) is the “PerineuriumThicknessMode” that tells
the program which method to use to define perineurium thickness. Required.

– As listed in Enums (S6 Text), known “PerineuriumThicknessModes” include

1. “MEASURED”: The program determines the average thickness of the perineurium using the pro-
vided inner and outer boundaries (i.e., “MaskInputMode”: INNER_AND_OUTER_SEPARATE or
INNER_AND_OUTER_COMPILED). The thickness is determined by finding the half the difference in
diameters of the circles with the same areas as the inner and outer traces of the fascicle.

2. Linear relationships between fascicle diameter and perineurium thickness as stored in config/
system/ci_peri_thickness.json:

∗ “GRINBERG_2008”

∗ “PIG_VN_INHOUSE_200523”

∗ “RAT_VN_INHOUSE_200601”

10.2. sample.json 41

ASCENT, Release v1.1.2

∗ “HUMAN_VN_INHOUSE_200601”

• “reshape_nerve”: The value (String) is the “ReshapeNerveMode” that tells the program which final
nerve profile (post-deformation) to use when “deform” is set to “PHYSICS”. Required.

– As listed in Enums (S6 Text), known “ReshapeNerveModes” include

1. “CIRCLE”: The program creates a circular nerve boundary with a preserved cross-sectional area
(i.e., for multifascicular nerves/nerves that have epineurium).

2. “NONE”: The program does not deform the nerve boundary (i.e., for monofascicular nerves/nerves
that do not have epineurium).

• “shrinkage_definition”: The value (String) is the “ShrinkageMode” that tells the program how to
interpret the “scale”->”shrinkage” parameter, which is provided as a decimal (i.e., 0.2 = 20%). Optional,
but assumes the mode “LENGTH_FORWARDS if omitted, since this was the original behavior before this
mode was added.

– As listed in Enums (S6 Text), known “ShrinkageModes” include

1. “LENGTH_BACKWARDS”: The value for “scale”->”shrinkage” refers to how much the length (e.g.,
radius, diameter, or perimeter) of the nerve cross section was reduced from the fresh tissue to the
imaged tissue.

∗ Formula: r_post = r_original * (1-shrinkage)

2. “LENGTH_FORWARDS”: The value for “scale”->”shrinkage” refers to how much the length (e.g.,
radius, diameter, or perimeter) of the nerve cross section increases from the imaged tissue to the
fresh tissue.

∗ Formula: r_post = r_original / (1+shrinkage)

3. “AREA_BACKWARDS”: The value for “scale”->”shrinkage” refers to how much the area of the nerve
cross section was reduced from the fresh tissue to the imaged tissue.

∗ Formula: A_post = A_original * (1-shrinkage)

4. “AREA_FORWARDS”: The value for “scale”->”shrinkage” refers to how much the area of the nerve
cross section increases from the imaged tissue to the fresh tissue.

∗ Formula: A_post = A_original / (1+shrinkage)

“smoothing”: Smoothing is applied via a dilating the nerve/fascicle boundary by a specified distance value and
then shrinking it by that same value.

• “nerve_distance”: Amount (Double) to smooth nerve boundary. Units of micrometers.

• “fascicle_distance”: Amount (Double) to smooth fascicle boundaries (inners and outers). Units of
micrometers.

“image_preprocessing”: Operations applied to the input masks before analysis.

• “fill_holes”: The value (Boolean) indicates whether to fill gaps in the binary masks. If true, any areas
of black pixels completely enclosed by white pixels will be turned white.

• “object_removal_area”: The value (Integer) indicates the maximum size of islands to remove from the
binary masks. Any isolated islands of white pixels with area less than or equal to object_removal_area will
be turned black. Units of pixels.

“morph_count”: The value (Integer) can be used to set the number of intermediately deformed nerve traces
between the boundary_start and boundary_end in Deformable (S13 Text) if the “DeformationMode” is
“PHYSCIS”. An excessively large number for morph_count will slow down the deformation process, though
a number that is too small could result in fascicles “escaping” from the nerve. Optional; if not specified default
value is 36.

42 Chapter 10. JSON file parameter guide

ASCENT, Release v1.1.2

“deform_ratio”: The value (Double, range: 0 to 1) can be used to deform a nerve if “DeformationMode”
is “PHYSICS” to an intermediately deformed boundary_end. For example, if the “ReshapeNerveMode”
is “CIRCLE” and deform_ratio = 1, then the boundary_end will be a circle. However, if the
“ReshapeNerveMode” is “CIRCLE” and deform_ratio = 0, the boundary_end will be the original nerve
trace. A value between 0 and 1 will result in a partially deformed nerve “on the way” to the final circle nerve
boundary. Optional, but default value is 1 if not defined explicitly. Note: if deform_ratio = 0, no changes to the
nerve boundary will occur, but the physics system will ensure the requirements in "boundary_separation"
are met.

“plot”: The value (Boolean) determines whether the program will generate output plots of sample morphology.
If true, plots are generated, if false, no plots are generated

“plot_folder”: The value (Boolean) describes plotting behavior (if enabled). If true, plots are generated in
the folder samples/<sample_index>/plots, if false, plots will pop up in a window.

"render_deform": The value (Boolean) if true, causes the pipeline to generated a popup window and display
a video of sample deformation as it occurs.

“Morphology”: This JSON Object is used to store information about the area and best-fit ellipse information of
the nerve and fascicles (outer and inners). The user does not set values to these JSON structures, but they are a
convenient record of the nerve morphometry for assigning model attributes based on the anatomy and data anal-
ysis. Units: micrometer2 (area); micrometer (length). User does NOT manually set these values. Automatically
populated. The values a and b are the full width and height of the ellipse major and minor axes, respectively
(i.e., analogous to diameter rather than radius of a circle).

5. Example:

{
"sample": "Rat16-3", // monofascicular nerve without epineurium
"pseudonym": "My example sample",
"sex": "M",
"level": "Cervical",
"samples_path": [
"samples"

],
"scale": {
"scale_bar_length": 500,
"scale_ratio": 12.5,
"shrinkage": 0.2

},
"modes": {
"mask_input": "INNER_AND_OUTER_COMPILED",
"nerve": "NOT_PRESENT",
"deform": "NONE",
"ci_perineurium_thickness": "MEASURED",
"reshape_nerve": "NONE",
"scale_input": "MASK"

},
"smoothing": {
"nerve_distance": 0,
"fascicle_distance": 0

},
"image_preprocessing": {
"fill_holes": true,
"object_removal_area": 10

},
(continues on next page)

10.2. sample.json 43

ASCENT, Release v1.1.2

(continued from previous page)

"morph_count": 36,
"deform_ratio": 1,
"plot": true,
"plot_folder": true,
"render_deform": false,
"Morphology": {
"Nerve": null,
"Fascicles": [

{
"outer": {
"area": 3822.2482582148805,
"x": 0.9345049858093262,
"y": 0.547715425491333,
"a": 53.227294921875,
"b": 95.37359619140625,
"angle": 12.440727233886719

},
"inners": [
{
"area": 3569.204913019861,
"x": 1.0080997943878174,
"y": 0.5349266529083252,
"a": 51.09575653076172,
"b": 93.090087890625,
"angle": 12.47867107391357

}
]

}
]

}
}

10.3 mock_sample.json

1. Named file: config/user/<mock_sample_index>.json

2. Purpose: Instructs the pipeline on which user-defined parameters to use for synthesizing nerve sample morphol-
ogy inputs (i.e., 2D binary images of segmented nerve morphology) for a single sample in preparation for 3D
representation of the nerve in the FEM.

3. Syntax: To declare this entity in config/user/<mock_sample_index>.json, use the following syntax:

Note: Eccentricity (e) is defined as a function of the major (a-) and minor (b-) axes as follows:

{
"global": {
"NAME": String

},
"scalebar_length": Double,
"nerve": {

(continues on next page)

44 Chapter 10. JSON file parameter guide

ASCENT, Release v1.1.2

(continued from previous page)

"a": Double,
"b": Double,
"rot": Double

},
"figure": {
"fig_margin": Double,
"fig_dpi": Integer

},

// EXAMPLE POPULATE Parameters for EXPLICIT
"populate": {
"mode": "EXPLICIT",
"min_fascicle_separation": 5,
"Fascicles": [
{
"centroid_x": Double,
"centroid_y": Double,
"a": Double,
"b": Double,
"rot": Double

},
...

]
},

// EXAMPLE POPULATE Parameters for TRUNCNORM
"populate": {
"mode": "TRUNCNORM",
"mu_fasc_diam": Double,
"std_fasc_diam": Double,
"n_std_diam_limit": Double,
"num_fascicle_attempt": Integer,
"num_fascicle_placed": Integer,
"mu_fasc_ecc": Double,
"std_fasc_ecc": Double,
"n_std_ecc_limit": Double,
"max_attempt_iter": Integer,
"min_fascicle_separation": Double,
"seed": Integer

},

// EXAMPLE POPULATE Parameters for UNIFORM
"populate": {
"mode": "UNIFORM",
"lower_fasc_diam": Double,
"upper_fasc_diam": Double,
"num_fascicle_attempt": Integer,
"num_fascicle_placed": Integer,
"lower_fasc_ecc": Double,
"upper_fasc_ecc": Double,
"max_attempt_iter": Integer,
"min_fascicle_separation": Double,

(continues on next page)

10.3. mock_sample.json 45

ASCENT, Release v1.1.2

(continued from previous page)

"seed": Integer
}

}

4. Properties:

“global”: The global JSON Object contains key-value pairs to document characteristics of the sample being
synthesized. Required.

• “NAME”: The value (String) of this property sets the sample name/identifier (e.g., Pig1-1) to relate to book-
keeping. The value will match the directory name in input/ containing the synthesized morphology files
created by the mock_morphology_generator.py. Required.

“scalebar_length”: The value (Double, units: micrometer) is the desired length of the scale bar in the gen-
erated binary image of the scale bar (s.tif). Required.

“nerve”: The nerve JSON Object contains key-value pairs for the elliptical nerve’s size and rotation. Required.

• “a”: Value is the nerve ellipse axis ‘a’ which is the full width major axis (Double, units: micrometer).
Required.

• “b”: Value is the nerve ellipse axis ‘b’ which is the full width minor axis (Double, units: micrometer).
Required.

• “rot_nerve”: Value is the nerve ellipse axis rotation (Double, units: degrees). Positive angles are counter-
clockwise and negative are clockwise, relative to orientation with a-axis aligned with +x-direction. Re-
quired.

“figure”: The figure JSON Object contains key-value pairs for parameters that determine the size and resolution
of the generated binary masks. Required.

• “fig_margin”: The value (Double, >1 otherwise an error is thrown) sets the x- and y-limits of the
binary masks generated. The limits are set relative to the maximum nerve ellipse axis dimension (+/-
fig_margin*max(a, b) in both x- and y-directions). Required.

• “fig_dpi”: The value (Integer) is the “dots per inch” resolution of the synthesized binary images. Higher
resolutions will result in more accurate interpolation curves of inners in COMSOL. We recommend >1000
for this value. Required.

“populate”: The populate JSON Object contains key-value pairs for parameters that determine how the nerve
contents (i.e., fascicle inners) are populated. Required.

• “mode”: The value (String) is the “PopulateMode” that tells the program which method to use to populate
the nerve. Required.

– As listed in Enums (S6 Text), known “PopulateModes” include

∗ “EXPLICIT”: Populates the nerve with elliptical inners that are defined explicitly by the user.

· “min_fascicle_separation”: The value (Double, units: micrometer) determines the mini-
mum distance between fascicle boundaries in the binary mask image that the pipeline will allow
without throwing an error. This value controls the separation required between fascicles in the
binary mask only. There is a separate parameter for forcing a distance (post-deformation) of
the nerve between fascicles and between fascicles and the nerve boundary in sample.json.
Required.

· “Fascicles”: The value List[JSON Object] contains a JSON Object for each inner. Re-
quired. Within each JSON Object, the following key-value pairs are present:

· “centroid_x”: Value (Double, units: micrometer) is the x-coordinate of the centroid of the
best-fit ellipse of the Trace. Required.

46 Chapter 10. JSON file parameter guide

ASCENT, Release v1.1.2

· “centroid_y”: Value (Double, units: micrometer) is the y-coordinate of the centroid of the
best-fit ellipse of the Trace. Required.

· “a”: Value is the ellipse axis ‘a’ which is the full width major axis (Double, units: micrometer).
Required.

· “b”: Value is the ellipse axis ‘b’ which is the full width minor axis (Double, units: micrometer).
Required.

· “rot”: Value is the ellipse axis rotation (Double, units: degrees). Positive angles are counter-
clockwise and negative are clockwise, relative to orientation with a-axis aligned with +x-
direction. Required.

∗ “TRUNCNORM”: Places fascicles in the nerve with size and eccentricity randomly based on a trun-
cated normal distribution. Rotation of fascicles is randomly drawn from uniform distribution from
0 to 360 degrees.

· “mu_fasc_diam”: The value (Double, units: micrometer) is the mean fascicle diameter in
the distribution. Required.

· “std_fasc_diam”: The value (Double, units: micrometer) is the standard deviation of fas-
cicle diameter in the distribution. Required.

· “n_std_diam_limit”: The value (Double) is the limited number of standard deviations for
the truncated normal fascicle diameter distribution. The value does not need to be an integer.
Required.

· “num_fascicle_attempt”: The value (Integer) is the number of different fascicles from the
distribution that the program will attempt to place. Required.

· If "num_fascicle_attempt" does not equal "num_fascicle_placed", a warning is
printed to the console instructing user to reduce the number, size, and/or separation of the
fascicles.

· “num_fascicle_placed”: The value (Integer) is the number of successfully placed fascicles
in the nerve cross section. Automatically populated.

· If "num_fascicle_attempt" does not equal "num_fascicle_placed", a warning is
printed to the console instructing user to reduce the number, size, and/or separation of the
fascicles.

· “mu_fasc_ecc”: The value (Double) is the mean fascicle eccentricity in the distribution.
Must be <= 1 and > 0. Set to 1 for circles. Required.

· “std_fasc_ecc”: The value (Double, units: micrometer) is the standard deviation of fascicle
eccentricity in the distribution. Required.

· “n_std_ecc_limit”: The value (Double) is the limited number of standard deviations for
the truncated normal fascicle eccentricity distribution. Required.

· “max_attempt_iter”: The value (Integer) is the number of different random locations
within the nerve that the program will attempt to place a fascicle before skipping it (pre-
sumably because it cannot possibly fit in the nerve). We recommend using 100+. Required.

· “min_fascicle_separation”: The value (Double, units: micrometer) determines the min-
imum distance between fascicle boundaries in the binary mask image that the pipeline will al-
low without throwing an error. This value controls the separation required between fascicles in
the binary mask only. There is a separate parameter for forcing a distance (post-deformation)
of the nerve between fascicles and between fascicles and the nerve boundary in sample.json.
Required.

· “seed”: The value (Integer) initiates the random number generator. Required.

10.3. mock_sample.json 47

ASCENT, Release v1.1.2

∗ “UNIFORM”: Places fascicles in the nerve with size and eccentricity randomly based on a uniform
distribution. Rotation of fascicles is randomly drawn from uniform distribution from 0 to 360
degrees.

· “lower_fasc_diam”: The value (Double, units: micrometer) is the lower limit of the uni-
form distribution for fascicle diameter. Required.

· “upper_fasc_diam”: The value (Double, units: micrometer) is the upper limit of the uni-
form distribution for fascicle diameter. Required.

· “num_fascicle_attempt”: The value (Integer) is the number of different fascicles from
the distribution that the program will attempt to place. Required.

· If "num_fascicle_attempt" does not equal "num_fascicle_placed", a warning is
printed to the console instructing user to reduce the number, size, and/or separation of the
fascicles.

· “num_fascicle_placed”: The value (Integer) is the number of successfully placed fasci-
cles in the nerve cross section. Automatically populated.

· If "num_fascicle_attempt" does not equal "num_fascicle_placed", a warning is
printed to the console instructing user to reduce the number, size, and/or separation of the
fascicles.

· “lower_fasc_ecc”: The value (Double) is the lower limit of the uniform distribution for
fascicle eccentricity. Must be <= 1 and > 0. Set to 1 for circles. Required.

· “upper_fasc_ecc”: The value (Double) is the upper limit of the uniform distribution for
fascicle eccentricity. Must be <= 1 and > 0. Set to 1 for circles. Required.

· “max_attempt_iter”: The value (Integer) is the number of different random locations
within the nerve that the program will attempt to place a fascicle before skipping it (presum-
ably because it cannot possibly fit in the nerve). We recommend using 100+. Required.

· “min_fascicle_separation”: The value (Double, units: micrometer) determines the
minimum distance between fascicle boundaries in the binary mask image that the pipeline
will allow without throwing an error. This value controls the separation required between
fascicles in the binary mask only. There is a separate parameter for forcing a distance (post-
deformation) of the nerve between fascicles and between fascicles and the nerve boundary
in sample.json. Required.

· “seed”: The value (Integer) initiates the random number generator. Required.

5. Example:

{
"global": {
"NAME": "Alien1-1"

},
scalebar_length": 1000,
"nerve": {
"a": 4400,
"b": 3600,
"rot": 0

},
"figure": {
"fig_margin": 1.2,
"fig_dpi": 1000

},
(continues on next page)

48 Chapter 10. JSON file parameter guide

ASCENT, Release v1.1.2

(continued from previous page)

"populate": {
"mode": "UNIFORM",
"lower_fasc_diam": 400,
"upper_fasc_diam": 500,
"num_fascicle_attempt": 15,
"num_fascicle_placed": 15,
"lower_fasc_ecc": 0.5,
"upper_fasc_ecc": 0.7,
"max_attempt_iter": 100,
"min_fascicle_separation": 10,
"seed": 120

}
}

10.4 model.json

1. Named file: samples/<sample_index>/models/<model_index>/model.json

2. Purpose: Contains user-defined modes and parameters to use in constructing the FEM (Model). We provide
parameterized control of model geometry dimensions, cuff electrode, material assignment, spatial discretization
of the FEM (mesh), and solution. Additionally, model.json stores meshing and solving statistics.

3. Syntax: To declare this entity in samples/<sample_index>/models/<model_index>/model.json, use the
following syntax:

{
"pseudonym": String,
"modes": {
"rho_perineurium": String,
"cuff_shift": String,
"fiber_z": String,
"use_ci": Boolean

},
"medium": {
"proximal": {

"distant_ground": Boolean,
"length": Double,
"radius": Double

},
"distal": {
"exist": Boolean,
"distant_ground": Boolean,
"length": Double,
"radius": Double,
"shift": {
"x": Double,
"y": Double,
"z": Double

}
}

},
(continues on next page)

10.4. model.json 49

ASCENT, Release v1.1.2

(continued from previous page)

"inner_interp_tol": Double,
"outer_interp_tol": Double,
"nerve_interp_tol": Double,
"cuff": {
"preset": String,
"rotate": {

"pos_ang": Double,
"add_ang": Double

},
"shift": {
"x": Double,
"y": Double,
"z": Double

}
},
"min_radius_enclosing_circle": Double,
"mesh": {
"shape_order": Integer,
"proximal": {
"type": {
"im": String,
"name": String

},
"hmax": Double,
"hmin": Double,
"hgrad": Double,
"hcurve": Double,
"hnarrow": Double

},
"distal": {
"type": {
"im": String,
"name": String

},
"hmax": Double,
"hmin": Double,
"hgrad": Double,
"hcurve": Double,
"hnarrow": Double

},
"stats": {
"name": String,
"quality_measure": String,
"number_elements": Double,
"min_quality": Double,
"mean_quality": Double,
"min_volume": Double,
"volume": Double
"mesh_times": {
"distal": Double,
"proximal": Double

},

(continues on next page)

50 Chapter 10. JSON file parameter guide

ASCENT, Release v1.1.2

(continued from previous page)

}
},
"frequency": Double,
"temperature": Double,
"conductivities": {
"recess": String,
"medium": String,
"fill": String,
"insulator": String,
"conductor": String,
"endoneurium": String,
"perineurium": {
"label": String,
"value": Double

},
"epineurium": String

},
"solver": {
"sorder": String

},
"solution": {
"sol_time": Double,
"name": String

}
}

4. Properties:

"pseudonym": This value (String) informs pipeline print statements, allowing users to better keep track of the
purpose of each configuration file. Optional.

“modes”

• “rho_perineurium”: The value (String) is the “PerineuriumResistivityMode” that tells the pro-
gram how to calculate the perineurium conductivity in a frequency and/or temperature dependent way.
Required.

– As listed in Enums (S6 Text), known “PerineuriumResistivityModes” include

∗ “RHO_WEERASURIYA”: Program uses mean of circuits C and D from Weerasuriya 1984 [1]
(frog sciatic nerve) (S28 Text) to adjust perineurium conductivity to account for temperature
and frequency (which are both stored in model.json).

∗ “MANUAL”: Program uses the user-defined value of conductivity in “conductivities” (under
“perineurium”) with no automated correction for frequency.

• “cuff_shift”: The value (String) is the “CuffShiftMode” that tells the program how to shift the cuff
on the nerve (S17 and S19 Text). Required.

– As listed in Enums (S6 Text), known modes include

∗ “NAIVE_ROTATION_MIN_CIRCLE_BOUNDARY”: Program shifts the cuff to within a user-
defined distance of the minimum bounding circle of the nerve sample. The direction of the
shift is defined in the preset cuff JSON file (S17 and S19 Text). Since this mode does not align
the cuff with the sample centroid, orientation masks (a.tif) are ignored.

10.4. model.json 51

ASCENT, Release v1.1.2

∗ “NAIVE_ROTATION_TRACE_BOUNDARY”: Program shifts the cuff to within a user-defined dis-
tance of the nerve trace boundary. The direction of the shift is defined in the preset cuff JSON
file (S17 and S19 Text). Since this mode does not align the cuff with the sample centroid,
orientation masks (a.tif) are ignored.

∗ “AUTO_ROTATION_MIN_CIRCLE_BOUNDARY”: Program shifts/rotates the cuff to within a
user-defined distance of the minimum bounding circle of the nerve sample to align with the
Slide’s “fascicle_centroid”. The direction of the shift is defined in the preset cuff JSON
file (S17 and S19 Text).

∗ “AUTO_ROTATION_MIN_TRACE_BOUNDARY”: Program shifts/rotates the cuff to within a user-
defined distance of the nerve trace boundary to align with the Slide’s “fascicle_centroid”.
The direction of the shift is defined in the preset cuff JSON file (S17 and S19 Text).

∗ “NONE”: Program keeps both the nerve centroid and cuff centered at (x,y) =(0,0) and no
cuff rotation is performed (S17 and S19 Text). Note: This mode will ignore any supplied
orientation image (a.tif).

• “fiber_z”: The value (String) is the “FiberZMode” that tells the program how to seed the NEURON
fibers along the length of the FEM. In the current implementation of the pipeline, this value must be
“EXTRUSION”. Required.

• “use_ci”: The value (Boolean), if true, tells the program whether to model fascicles (outer) that have
a single inner as a sheet resistance (i.e., COMSOL “contact impedance”) to simplify the meshing of the
model. If the value is false, the program will mesh the perineurium of all fascicles. Note that fascicles that
have more than one inner per outer always have a meshed perineurium.

“medium”: The medium JSON Object contains information for the size, position, and boundary conditions (i.e.,
grounded external surface) of the proximal (i.e., cylinder containing the full length of nerve and the cuff electrode)
and distal (i.e., surrounding) medium domains. Required.

• “proximal”: The proximal JSON Object has keys “distant_ground” (Boolean) that sets the outer
surface to ground if true (if false, sets the outer surface to “current conservation”, i.e. perfectly insu-
lating), “length” (Double, units: micrometer), and “radius” (Double, units: micrometer) of a cylindri-
cal medium. The proximal cylindrical medium is centered at the origin (x,y,z)=(0,0,0), where the (x,y)-
origin is the centroid of the nerve sample (i.e., best-fit ellipse of the Trace/Nerve), and extends into only
the positive z-direction for the length of the nerve. A warning is printed to the console if the user sets
“distant_ground” to true AND a distal domain exists (see “distal” below). Required.

• “distal”: The distal JSON Object has keys analogous to the “proximal” JSON Object, but contains
additional keys “exist” (Boolean) and “shift” (JSON Object containing key-values pairs (Doubles)). The
“exist” key allows the user to toggle the existence of the distal medium, which is intended to be used
to apply coarser meshing parameters than in the proximal medium (which contains the nerve and cuff
electrode along the full length of the nerve). The “shift” JSON Object provides control for the user to
move the distal medium around the proximal medium (x,y,z) (Double, units: micrometer). Optional.

“inner_interp_tol”: The value (Double) sets the relative tolerance for the representation of the inner trace(s)
in COMSOL. When the value is set to 0, the curve is jagged, and increasing the value of this parameter increases
the smoothness of the curve. COMSOL’s “closed curve” setting interpolates the points of the curve with contin-
uous first- and second-order derivatives. Generally, we find an interpolation tolerance in the range of 0.01-0.02
to be appropriate, but the user should check that the interpolation tolerance is set correctly for their input nerve
sample morphology. See the COMSOL Documentation for more info. Required.

“outer_interp_tol”: The value (Double) sets the relative tolerance for the representation of the outer trace(s)
in COMSOL. When the value is set to 0, the curve is jagged, and increasing the value of this parameter increases
the smoothness of the curve. COMSOL’s “closed curve” setting interpolates the points of the curve with contin-
uous first- and second-order derivatives. Generally, we find an interpolation tolerance in the range of 0.01-0.02
to be appropriate, but the user should check that the interpolation tolerance is set correctly for their input nerve
sample morphology. See the COMSOL Documentation for more info. Required.

52 Chapter 10. JSON file parameter guide

https://doc.comsol.com/5.5/doc/com.comsol.help.comsol/comsol_ref_geometry.14.038.html
https://doc.comsol.com/5.5/doc/com.comsol.help.comsol/comsol_ref_geometry.14.038.html

ASCENT, Release v1.1.2

“nerve_interp_tol”: The value (Double) sets the relative tolerance for the representation of the nerve (i.e.
epineurium) trace in COMSOL. When the value is set to 0, the curve is jagged, and increasing the value of this
parameter increases the smoothness of the curve. COMSOL’s “closed curve” setting interpolates the points of
the curve with continuous first- and second-order derivatives. Generally, we find an interpolation tolerance in the
range of 0.001-0.005 to be appropriate, but the user should check that the interpolation tolerance is set correctly
for their input nerve sample morphology. See the COMSOL Documentation for more info. Required.

“cuff”: The cuff JSON Object contains key-value pairs that define which cuff to model on the nerve in addition
to how it is placed on the nerve (i.e., rotation and translation). If the user would like to loop over preset cuff
designs, then they must create a Model (model index) for each cuff preset. Required.

• “preset”: The value (String) indicates which cuff to model, selected from the list of filenames of the
“preset” cuffs in config/system/cuffs/<filename>.json (Fig 3A and S17 Text). Required.

• “rotate”: Contains two keys: “pos_ang” (automatically populated based on “CuffShiftMode”, i.e.,
“cuff_shift” parameter in Model) and “add_ang” (optionally set by user to rotate cuff by an additional
angle) (S19 Text).

– “pos_ang” (Double, units: degrees) is calculated by the pipeline for the “AUTO” CuffShiftModes
(S19 Text).

– “add_ang” (Double, units: degrees) is user-defined and adds additional rotation in the counter-
clockwise direction. If the parameter is not specified, the default value is 0. Optional.

• “shift”: Contains three keys: “x”, “y”, and “z”. Automatically calculated based on “CuffShiftMode”.

– Each key defines the translation of the cuff in the Cartesian coordinate system (Double, units: mi-
crometer). The values are automatically populated by the pipeline based on the “CuffShiftMode”
(i.e., “cuff_shift” parameter within “modes”). Origin (x,y) = (0,0) corresponds to the centroid of
the nerve sample (or fascicle best-fit ellipse of the Trace if monofascicular), and shift in z-direction
is along the proximal medium’s (i.e., the nerve’s) length relative to the cuff “Center” (defined in
preset JSON file).

“min_radius_enclosing_circle”: The value (Double, units: micrometer) is automatically defined in the
program with the radius of the minimum bounding circle of the sample, which is used for placing the cuff on the
nerve for certain CuffShiftModes. Automatically calculated.

“mesh”: The mesh JSON Object contains key-value pairs that define COMSOL’s meshing parameters (required,
user-defined) and resulting meshing statistics (automatically calculated).

• “quality_measure”: (String) COMSOL measure to use in calculating mesh quality stats. Options in-
clude skewness, maxangle, volcircum, vollength, condition, growth. Default is “vollength” if not specified.

• “shape_order”: Order of geometric shape functions (Integer) (e.g., quadratic = 2). Required.

• “proximal”: Meshing parameters for the proximal cylindrical domain (as defined in “medium”). Re-
quired (S25 Text).

– “type”: JSON Object containing parameters/definitions specific to meshing discretization method
(e.g., free tetrahedral “ftet”). We recommend free tetrahedral meshes. Required (S25 Text).

∗ “im”: COMSOL indexing prefix (String) (e.g., free tetrahedral “ftet”). Required.

∗ “name”: COMSOL system name (String) for the created mesh (e.g., “FreeTet”). Required.

– “hmax”: Maximum element size (Double, units: micrometer). We recommend between 1000-4000.
Required.

– “hmin”: Minimum element size (Double, units: micrometer). We recommend 1. Required.

– “hgrad”: Maximum element growth (Double). We recommend between 1.8-2.5. Required.

– “hcurve”: Curvature factor (Double). We recommend 0.2. Required.

10.4. model.json 53

https://doc.comsol.com/5.5/doc/com.comsol.help.comsol/comsol_ref_geometry.14.038.html
https://doi.org/10.1371/journal.pcbi.1009285.g003

ASCENT, Release v1.1.2

– “hnarrow”: Resolution of narrow regions (Double). We recommend

1. Required.

• “distal”: Meshing parameters for the distal cylindrical domain (as defined in “medium”). Required if
distal domain present (see “medium”).

– “type”: JSON Object containing parameters/definitions specific to meshing discretization method
(e.g., free tetrahedral “ftet”). We recommend free tetrahedral meshes. Required (S25 Text).

∗ “im”: COMSOL indexing prefix (String) (e.g., free tetrahedral “ftet”). Required.

∗ “name”: COMSOL system name (String) for the created mesh (e.g., “FreeTet”). Required.

– “hmax”: Maximum element size (Double, units: micrometer). We recommend between 1000-4000.
Required.

– “hmin”: Minimum element size (Double, units: micrometer). We recommend 1. Required.

– “hgrad”: Maximum element growth (Double). We recommend between 1.8-2.5. Required.

– “hcurve”: Curvature factor (Double). We recommend 0.2. Required.

– “hnarrow”: Resolution of narrow regions (Double). We recommend

1. Required.

• “stats”: Meshing statistics. See COMSOL documentation for more details. Automatically populated.

– “name”: Mesher identity (String) which generated the mesh (i.e., COMSOL version)

– “quality_measure”: (String) (e.g., “skewness”, “maxangle”, “volcircum”, “vollength”, “condi-
tion”, or “growth”)

– “number_elements”: (Integer)

– “min_quality”: (Double)

– “mean_quality”: (Double)

– “min_volume”: (Double)

– “volume”: (Double)

– “mesh_times”: JSON Object containing key value parirs storing the elapsed time (in milliseconds)
for each mesh type (Proximal and Distal).

“frequency”: Defines the frequency value used for frequency-dependent material conductivities (Double, unit
Hz) (S28 Text). Required only if “PerineuriumResistivityMode” is “RHO_WEERASURIYA”.

“temperature”: Defines the temperature of the nerve environment, which is used to define temperature-
dependent material conductivity and ion channel mechanisms in NEURON (Double, unit: Celsius). Required
(user must verify *.MOD files will adjust Q10 values for temperature, verified temperature is 37 °C).

“conductivities”: The conductivities JSON Object contains key-value pairs that assign materials (either
previously defined in materials.json (String), or explicitly defined in place (JSON Object)) to material func-
tions (i.e., cuff “insulator”, contact “conductor”, contact “recess”, cuff “fill”, “endoneurium”, “perineurium”,
“epineurium”). All materials functions that are assigned to domains in the part primitives are required. If a
contact primitive contains a selection for recessed domain, the recess material must be assigned even if there is
no recessed domain in the preset’s parameterized implementation.

• If the material is defined in place, the JSON Object value is of the following structure:

– “label”: Communicates type of material assigned to domains (String). The label is used to assign
materials to domains (S27 Text). Required.

54 Chapter 10. JSON file parameter guide

ASCENT, Release v1.1.2

– “value”: Required. Material conductivity for isotropic materials (String, unit: S/m) OR (String,
“anisotropic”) with additional keys:

∗ “sigma_x”, “sigma_y”, “sigma_z” each with values (String, unit: S/m). Required.

“solver”: The solver JSON Object contains key-value pairs to control the solver. Required.

• “sorder”: Order of solution shape functions (String) (e.g., quadratic). Required.

“solution”: The solution JSON Object contains key-value pairs to keep record of FEM solver processes.
Automatically populated.

• “sol_time”: (Double) Time (in milliseconds) elapsed in solving electric currents.

• “name”: Solver identity (String) used to solve electric currents (i.e., COMSOL version).

5. Example:

{
"pseudonym": "My example model",
"modes": {
"rho_perineurium": "RHO_WEERASURIYA",
"cuff_shift": "AUTO_ROTATION_MIN_CIRCLE_BOUNDARY",
"fiber_z": "EXTRUSION",
"use_ci": true

},
"medium": {
"proximal": {

"distant_ground": false,
"length": 25000,
"radius": 3000

},
"distal": {
"exist": true,
"distant_ground": true,
"length": 25000,
"radius": 5000,
"shift": {
"x": 0,
"y": 0,
"z": 0

}
}

},
"inner_interp_tol": 0.01,
"outer_interp_tol": 0.01,
"nerve_interp_tol": 0.01,
"cuff": {
"preset": "CorTec300.json",
"rotate": {
"add_ang": 0,
"pos_ang": 143.1780701822382

},
"shift": {
"x": 13.596123436622277,
"y": 62.55712593704458,
"z": 0

(continues on next page)

10.4. model.json 55

ASCENT, Release v1.1.2

(continued from previous page)

}
},
"min_radius_enclosing_circle": 78.985163169824,
"mesh": {
"quality_measure":"vollength",
"shape_order": 2,
"proximal": {
"type": {
"im": "ftet",
"name": "FreeTet"

},
"hmax": 4000,
"hmin": 10,
"hgrad": 1.8,
"hcurve": 0.2,
"hnarrow": 1

},
"distal": {
"type": {
"im": "ftet",
"name": "FreeTet"

},
"hmax": 4000,
"hmin": 10,
"hgrad": 1.8,
"hcurve": 0.2,
"hnarrow": 1

},
"stats": {
"mesh_times": {
"distal": 555.2927,
"proximal": 6470.4786

},
"volume": 9.77E11,
"quality_measure_used": "vollength",
"min_quality": 0.1703,
"min_volume": 9.391,
"name": "COMSOL Multiphysics 5.6 (Build: 401)",
"number_elements": 180980,
"mean_quality": 0.6824

},
"frequency": 1, // in this example, no change in material properties
occurs
"temperature": 37,
"conductivities": {
"recess": "saline",
"medium": "muscle",
"fill": "saline",
"insulator": "silicone",
"conductor": "platinum",
"endoneurium": "endoneurium",
"perineurium": {

(continues on next page)

56 Chapter 10. JSON file parameter guide

ASCENT, Release v1.1.2

(continued from previous page)

"label": "RHO_WEERASURIYA @ 1 Hz",
"value": "0.0008703220191470844"

},
"epineurium": "epineurium"

},
"solver": {
"sorder": "quadratic"

},
"solution": {
"name": "COMSOL Multiphysics 5.6 (Build: 401)",
"sol_time": 23801.7899

},
}

10.5 sim.json

1. Named file: config/user/sims/<sim_index>.json

2. Purpose: Instructs the pipeline on which user-defined parameters to use in constructing NEURON simulation
directories (Sim). We provide parameterized control of cuff electrode contact weighting, fiber model and place-
ment in the FEM, extracellular stimulation waveform, intracellular stimulation, flags to indicate which outputs
to save (e.g., state variables of channel gating mechanisms, transmembrane potential, intracellular stimulation),
and stimulation threshold-finding protocol (S22, S32, and S33 Text).

3. Syntax: To declare this entity in config/user/sims/, use the following syntax:

{
"pseudonym": String,
"n_dimensions": Integer,
"active_srcs": {
"CorTec300.json": [[Double, Double]], // for example
"default": [[1, -1]]

},
"fibers": {
"mode": String,
"xy_trace_buffer": Double,
"z_parameters": {

// EXAMPLE diameter parameter for defining fixed diameter fibers
"diameter": [Double],

// EXAMPLE diameter parameter for TRUNCHNORM (i.e., diameters from a␣
→˓truncated normal

// distribution) which is only compatible for "MRG_INTERPOLATION" myelinated␣
→˓or

// unmyelinated fiber types)
"diameter":{
"mode": "TRUNCHNORM",
"mu": Double,
"std": Double,
"n_std_limit": Double,

(continues on next page)

10.5. sim.json 57

ASCENT, Release v1.1.2

(continued from previous page)

"seed": Integer
},

// EXAMPLE diameter parameter for UNIFORM (i.e., diameters from a uniform
// distribution) which is only compatible for "MRG_INTERPOLATION" myelinated␣

→˓or
// unmyelinated fiber types)
"diameter":{
"mode": "UNIFORM",
"upper": Double,
"lower": Double,
"seed": Integer

},

"min": Double,
"max": Double,
"full_nerve_length": Boolean,
"offset": Double, // or "random" for random jitter within +/- 0.5 internodal␣

→˓length
"absolute_offset": Double,
"seed": Integer

},

// EXAMPLE XY Parameters for CENTROID (from best-fit ellipse of the Trace)
"xy_parameters": {
"mode": "CENTROID"

},

// EXAMPLE XY Parameters for UNIFORM_COUNT
"xy_parameters": {
"mode": "UNIFORM_COUNT",
"count": Integer,
"seed": Integer

},

// EXAMPLE XY Parameters for WHEEL
"xy_parameters": {
"mode": "WHEEL",
"spoke_count": Integer,
"point_count_per_spoke": Integer,
"find_centroid": Boolean, // centroid of inner polygon
"angle_offset": Double,
"angle_offset_is_in_degrees": Boolean

},

// EXAMPLE XY Parameters for EXPLICIT
"xy_parameters": {
"mode": "EXPLICIT",
"explicit_fiberset_index" : Integer

},

// EXAMPLE XY Parameters for UNIFORM_DENSITY

(continues on next page)

58 Chapter 10. JSON file parameter guide

ASCENT, Release v1.1.2

(continued from previous page)

"xy_parameters": {
"mode": "UNIFORM_DENSITY",
"top_down": Boolean,
// top_down is true
"target_density": Double,
"minimum_number": Integer,
// top_down is false
"target_number": Integer,
"maximum_number": Integer,
// for both top_down is true and false
"seed": Integer

}
},
"waveform": {
"global": {
"dt": Double,
"on": Double,
"off": Double,
"stop": Double

},

// EXAMPLE WAVEFORM for MONOPHASIC_PULSE_TRAIN
"MONOPHASIC_PULSE_TRAIN": {

"pulse_width": Double,
"pulse_repetition_freq": Double,
"digits": Integer

},

// EXAMPLE WAVEFORM for SINUSOID
"SINUSOID": {

"pulse_repetition_freq": Double,
"digits": Integer

},

// EXAMPLE WAVEFORM for BIPHASIC_FULL_DUTY
"BIPHASIC_FULL_DUTY": {

"pulse_repetition_freq": Double,
"digits": Integer

},

// EXAMPLE WAVEFORM for BIPHASIC_PULSE_TRAIN
"BIPHASIC_PULSE_TRAIN": {

"pulse_width": Double,
"inter_phase": Double,
"pulse_repetition_freq": Double,
"digits": Integer

},

// EXAMPLE WAVEFORM for
BIPHASIC_PULSE_TRAIN_Q_BALANCED_UNEVEN_PW
"BIPHASIC_PULSE_TRAIN_Q_BALANCED_UNEVEN_PW": {

"pulse_width_1": Double,

(continues on next page)

10.5. sim.json 59

ASCENT, Release v1.1.2

(continued from previous page)

"pulse_width_2": Double,
"inter_phase": Double,
"pulse_repetition_freq": Double,
"digits": Integer

},

// EXAMPLE WAVEFORM for EXPLICIT
"EXPLICIT": {

"index": Integer,
"dt_atol": Double,
"period_repeats ": Integer

}
},
"intracellular_stim": {
"times": {
"pw": Double,
"IntraStim_PulseTrain_delay": Double,
"IntraStim_PulseTrain_dur": Double

},
"pulse_repetition_freq": Double,
"amp": Double,
"ind": Integer

},
"saving": {
"space": {
"vm": Boolean,
"gating": Boolean,
"times": [Double],

},
"time": {
"vm": Boolean,
"gating": Boolean,
"istim": Boolean,
"locs": [Double] OR String

},
"end_ap_times": {
"loc_min": Double,
"loc_max": Double,
"threshold": Double

}
"runtimes": Boolean

},

// EXAMPLE PROTOCOL for FINITE_AMPLITUDES
"protocol": {
"mode": "FINITE_AMPLITUDES",
"initSS": Double,
"dt_initSS": Double,
"amplitudes": [Double, Double, ...]

},

// EXAMPLE PROTOCOL for ACTIVATION_THRESHOLD

(continues on next page)

60 Chapter 10. JSON file parameter guide

ASCENT, Release v1.1.2

(continued from previous page)

"protocol": {
"mode": "ACTIVATION_THRESHOLD", //String
"initSS": Double,
"dt_initSS": Double,
"threshold": {

"value": Double,
"n_min_aps": Integer,
"ap_detect_location": Double

},
"bounds_search": {
"mode": String,
"top": Double,
"bottom": Double,
"step": Double,
"scout": {
"model":Integer,
"sim": Integer

},
},
"termination_criteria": {
"mode": "ABSOLUTE_DIFFERENCE",
"percent": Double

}
},

// EXAMPLE PROTOCOL for BLOCK_THRESHOLD
"protocol": {
"mode": "BLOCK_THRESHOLD", // String
"initSS": Double,
"dt_initSS": Double,
"threshold": {

"value": Double,
"n_min_aps": Integer,
"ap_detect_location": Double

},
"bounds_search": {
"mode": String,
"top": Double,
"bottom": Double,
"step": Double

},
"termination_criteria": {
"mode": String,
"percent": Double

}
},
"supersampled_bases": {
"generate": Boolean,
"use": Boolean,
"dz": Double,
"source_sim": Integer

}

(continues on next page)

10.5. sim.json 61

ASCENT, Release v1.1.2

(continued from previous page)

}

4. Properties:

"pseudonym": This value (String) informs pipeline print statements, allowing users to better keep track of the
purpose of each configuration file. Optional.

“n_dimensions”: The value (Integer) is the number of parameters in Sim for which a list is provided rather than
a single value. The user sets the number of parameters they are looping over (e.g., if looping over waveform pulse
width and fiber diameter, n_dimensions = 2). We included this control to prevent the user from accidentally
creating unintended NEURON simulations. The pipeline will only loop over the first n-dimensions. Required.

“active_srcs”: The value is a JSON Object containing key-value pairs of contact weightings for preset cuffs.
Each value (List[List[Double]]) is the contact weighting to use to make extracellular potentials inputs to
NEURON simulations. The values should not exceed +/-1 in magnitude, otherwise an error is thrown. For
monopolar cuff electrodes, the value should be either +1 or -1. For cuff electrodes with more than one contact
(2+), the sum of weightings should be +1, -1, or 0. If the preset cuff is not a key in active_srcs, the list of
contact weightings for the “default” key is used. Required. The potentials/ for a single fiber are calculated in the
following way for the default weighting:

"default": [[1, -1]] // [[weight1 (for src 1 on), weight2 (for src 2 on)]]

The value of potentials/ is applied to a model fiber in NEURON multiplied by the stimulation amplitude, which
is either from a list of finite amplitudes or a binary search for thresholds (S22 Text)

“fibers”: The value is a JSON Object containing key-value pairs that define how potentials are sampled in the
FEM for application as extracellular potentials in NEURON (i.e., the Cartesian coordinates of the midpoint for
each compartment (i.e., section or segment) along the length of the fiber). Required.

• “mode”: The value (String) is the “FiberGeometry” mode that tells the program which fiber geometries
to simulate in NEURON (S21 and S32 Text). Required.

– As listed in Enums (S6 Enums), known modes include

∗ “MRG_DISCRETE” (published MRG fiber model)

∗ “MRG_INTERPOLATION” (interpolates the discrete diameters from published MRG fiber mod-
els)

∗ “TIGERHOLM” (published C-fiber model)

∗ “SUNDT” (published C-fiber model)

∗ “RATTAY” (published C-fiber model)

– For a user to simulate a novel fiber type using the pipeline, they must define the spatial discretiza-
tion of points within the config/system/fiber_z.json file to match the dimensions of the fiber
compartments connected in NEURON. The “FiberGeometry” mode and parameters in the “fibers”
JSON Object in Sim must match the keys in config/system/fiber_z.json to select and define
a fiber type (e.g., MRG requires specification of fiber “diameters”).

• “xy_trace_buffer”: The value (Double, units: micrometer) indicates the minimum required distance
between the (x,y)-coordinates of a given fiber and the inner’s boundary. Since the domain boundaries are
modeled in COMSOL as an interpolation curve, the exact morphology boundary coordinates read into
COMSOL will be very close to (but not exactly equal to) those used in Python to seed fiber locations. To

62 Chapter 10. JSON file parameter guide

ASCENT, Release v1.1.2

protect against instances of fibers falling within the nerve boundary traces in the exact Python traces, but
not in COMSOL’s interpolation of those traces, we provided this parameter. Required.

• “z_parameters”: The value is a JSON Object containing key-value pairs to instruct the system in seeding
fibers along the length of the nerve. Required.

– “diameter” The value can take multiple forms to define the fiber diameter that the user is simu-
lating in NEURON (S21 and S32 Text). The value can control simulation of either fixed diameter
fibers or fibers chosen from a distribution of diameters (note simulating a distribution of fiber diam-
eters is only compatible with “MRG_INTERPOLATION”myelinated or unmyelinated fiber types, not
“MRG_DISCRETE”). In Sim, only one mode of defining fiber diameters can be used. Required.

∗ Fixed diameter: the value (Double or List[Double], units: micrometer) is the diameter of the
fiber models. If using with “MRG_DISCRETE”, the diameters must be members of the set of
published diameters.

∗ Distribution of diameters: the value is a dictionary of key-value pairs to define the distri-
bution of diameters based on the “mode” parameter, which can be either “TRUNCNORM” or
“UNIFORM”.

· “TRUNCNORM”

· “mode”: “TRUNCNORM” (String). Required.

· “mu”: The value (Double, units micrometer) is the mean diameter of the truncated
normal distribution. Required.

· “std”: The value (Double, units micrometer) is the diameter standard deviation of the
truncated normal distribution. Required.

· “n_std_limit”: The value (Double) is the number of standard deviations from the
mean to bound the truncated normal distribution. Required.

· “seed”: The value (Integer, unitless) seeds the random number generator before sam-
pling fiber diameters.

· “UNIFORM”

· “mode”: UNIFORM” (String). Required.

· “upper”: The value (Double, units micrometer) is the upper limit on the distribution
of diameters. Required.

· “lower”: The value (Double, units micrometer) is the lower limit on the distribution
of diameters. Required.

· “seed”: The value (Integer) seeds the random number generator before sampling fiber
diameters.

– “min”: the value (Double or List[Double], units: micrometer) is the distal extent of the seeded fiber
along the length of the nerve closer to z = 0. Optional: if min and max are not both provided then
the fiber length is assumed to be the proximal medium length (see model.json).

– “max”: The value (Double or List[Double] , units: micrometer) is the distal extent of the seeded
fiber along the length of the nerve closer to z = length of the proximal medium (as defined in model.
json, the length of the nerve). Optional: if min and max are not both provided then the fiber length
is assumed to be the proximal medium length by default.

– full_nerve_length: (Boolean) Optional. If true, suppresses the warning message associated with
using the full length nerve when "min" and "max" are not defined. Must be false or not defined if
"min" and "max" are defined.

10.5. sim.json 63

ASCENT, Release v1.1.2

– “offset”: The value (Double or String) is the fraction of the node-node length (myelinated fibers)
or segment length (unmyelinated fibers) that the center coordinate of the fiber is shifted along the
z-axis from the longitudinal center of the proximal medium. If the value is “random”, the offset will
be randomly selected between +/- 0.5 section/segment length; to avoid the randomized longitudinal
placement, set the offset value to ‘0’ for no offset.

– “absolute_offset”: The value (Double) is the distance (micrometers) that the center coordinate
of the fiber is shifted along the z-axis from the longitudinal center of the proximal medium. This
value is additive with "offset". Note that the shift is with respect to the model center. If a negative
value is passed, the fiber will be shifted in the -z direction.

– “seed”: The value (Integer) seeds the random number generator before any random offsets are
created. Required only if “offset” is not defined, in which case the program will use a random offset.

• “xy_parameters”: The value is a JSON Object containing key-value pairs to instruct the system in
seeding fiber locations at which to sample potentials inside inners in the nerve cross section (Fig 3B).
Include only one version of this block in your sim.json file. Required.

“mode”: The value (String) is the “FiberXYMode” that tells the program how to seed fiber locations inside
each inner in the nerve cross section. Required.

• As listed in Enums (S6 Enums), known modes include

– “CENTROID”: Place one fiber at the centroid (i.e., from the best-fit ellipse of the inner) of each inner.

∗ No parameters required.

– “UNIFORM_COUNT”: Randomly place the same number of fibers in each inner, regardless of inner’s
size.

∗ “count”: The value (Integer) is the number of fibers per inner. Required.

∗ “seed”: The value (Integer) is the seed for the random number generator that is instantiated
before the point picking algorithm for fiber (x,y)-coordinates starts. Required.

– “WHEEL”: Place fibers in each inner following a pattern of radial spokes out from the geometric
centroid.

∗ “spoke_count”: The value (Integer) is the number of radial spokes. Required.

∗ “point_count_per_spoke”: The value (Integer) is the number of fibers to place on each
spoke out from the centroid (i.e., excluding the centroid). Required.

∗ “find_centroid”: The value (Boolean), if true, tells the program to include the geometric
centroid as a fiber coordinate. Required.

∗ “angle_offset”: The value (Double, either degrees or radians depending on next parameter,
“angle_offset_is_in_degrees”) sets the direction of the first spoke in the wheel. The
rest of the spokes are equally spaced (radially) based on the “spoke_count”. Required.

∗ “angle_offset_is_in_degrees”: The value (Boolean), if true, tells the program to in-
terpret “angle_offset” as degrees. If false, the program interprets “angle_offset” in
radians. Required.

– “EXPLICIT”: The mode looks for a “<explicit_index>.txt” file in the user created directory
(samples/<sample_index>/explicit_fibersets) for user-specified fiber (x,y)-coordinates
(see config/templates/explicit.txt). Note, this file is only required if the user is using the
“EXPLICIT” “FiberXYMode”. An error is thrown if any explicitly defined coordinates are not in-
side any inners.

∗ “explicit_fiberset_index”: The value (Integer) indicates which explicit index file to
use.

64 Chapter 10. JSON file parameter guide

https://doi.org/10.1371/journal.pcbi.1009285.g003

ASCENT, Release v1.1.2

– “UNIFORM_DENSITY”: Place fibers randomly in each inner to achieve a consistent number of fibers
per unit area.

∗ “top_down”: The value (Boolean) dictates how the pipeline determines how many fibers to
seed in each inner. Required.

· If “top_down” is true, the program determines the number of fibers per inner
with the “target_density”. If the number of fibers in an inner is less than the
“minimum_number”, then the minimum number is used.

· “target_density”: The value (Double) is the density (fibers/µm2). Required only if
“top_down” is true.

· “minimum_number”: The value (Integer) is the minimum number of fibers that the
program will place in an inner. Required only if “top_down” is true.

· If “top_down” is false (i.e., bottom-up), the program determines the number of fibers
per unit area (i.e., fiber density) with “target_number” and the area of the smallest
inner. If the number of fibers in an inner is more than the “maximum_number”, then
the maximum number is used.

· “target_number”: The value (Integer) is the number of fibers placed in the smallest
inner. Required only if “top_down” is false.

· “maximum_number”: The value (Integer) is the maximum number of fibers placed in
the largest inner. Required only if “top_down” is false.

∗ “seed”: The value (Integer) is the seed for the random number generator that is instantiated
before the point picking algorithm for fiber (x,y)-coordinates starts. Required.

“waveform”: The waveform JSON Object contains key-value pairs to instruct the system in setting global time
discretization settings and stimulation waveform parameters (Fig 3C). Required.

• “global”: the value (JSON Object) contains key-value pairs that define NEURON time discretization
parameters. Required.

– “dt”: The value (Double, units: milliseconds) is the time step used in the NEURON simulation for
fiber response to electrical stimulation. Required.

– “on”: The value (Double, units: milliseconds) is the time when the extracellular stimulation is
turned on. Required.

– “off”: The value (Double, units: milliseconds) is the time when the extracellular stimulation is
turned off. Required.

– “stop”: The value (Double, units: milliseconds) is the time when the simulation stops. Required.

The user must also provide one of the following JSON Objects containing “WaveformMode”-specific parameters.
The user can only loop parameters for one type of waveform in a Sim.

Note: the “digits” parameter for the following “WaveformModes” sets the precision of the unscaled
current amplitude. For waveforms that are only ever +/-1 and 0 (e.g., MONOPHASIC_PULSE_TRAIN,
BIPHASIC_FULL_DUTY, BIPHASIC_PULSE_TRAIN), the user can represent the waveform faithfully with
1 digit of precision. However, for waveforms that assume intermediate values (e.g., SINUSOID,
BIPHASIC_PULSE_TRAIN_Q_BALANCED_UNEVEN_PW, EXPLICIT) more digits of precision may be required to
achieve numerical accuracy. An excessive number of digits of precision will increase computational load and
waste storage resources.

Note: if one of the parameter values in the “WaveformMode” JSON Object is a list, then there are n_sim/ folders
created for as many waveforms as parameter values in the list. If more than one parameter value is a list, then
there are n_sim/ folders created for each combination of waveform parameters among the lists (i.e., the Cartesian
product).

10.5. sim.json 65

https://doi.org/10.1371/journal.pcbi.1009285.g003

ASCENT, Release v1.1.2

• “MONOPHASIC_PULSE_TRAIN”

– “pulse_width”: The value (Double, or List[Double], units: milliseconds) is the duration (“width”)
of the monophasic rectangular pulse. Required.

– “pulse_repetition_freq”: The value (Double, or List[Double], units: Hz) is the rate at which
individual pulses are delivered. Required.

– “digits”: The value (Integer) is the number of digits of precision used in saving the waveform to
file. Required.

• “SINUSOID”

– “pulse_repetition_freq”: The value (Double, or List[Double], units: Hz) is the frequency of
the sinusoid. Required.

– “digits”: The value (Integer) is the number of digits of precision used in saving the waveform to
file. Required.

• “BIPHASIC_FULL_DUTY”: This waveform consists of biphasic symmetric rectangular pulses, where
there is no “off” time between repetitions of the biphasic pulse, hence the “full duty cycle” designa-
tion. Thus, the phase width (i.e., the duration of one phase in the symmetric pulse) is equal to half of
the period, as defined by the specified “pulse_repetition_freq”. This waveform is a special case of
“BIPHASIC_PULSE_TRAIN_Q_BALANCED_UNEVEN_PW” (below).

– “pulse_repetition_freq”: The value (Double, or List[Double], units: Hz) is the rate at which
individual pulses are delivered. Required.

– “digits”: The value (Integer) is the number of digits of precision used in saving the waveform to
file. Required.

• “BIPHASIC_PULSE_TRAIN”: This waveform consists of biphasic symmetric rectangular pulses, where
the phase width (i.e., the duration of one phase of the symmetric pulse) is defined by “pulse_width”
and the two phases of the biphasic symmetric pulses may be spaced by a gap defined by “inter_phase”.
This waveform is a special case of “BIPHASIC_PULSE_TRAIN_Q_BALANCED_UNEVEN_PW” (below).

– “pulse_width”: The value (Double, or List[Double], units: milliseconds) is the duration (“width”)
of one phase in the biphasic rectangular pulse. Required.

– “inter_phase”: The value (Double, or List[Double], units: milliseconds) is the duration of time
between the first and second phases in the biphasic rectangular pulse. Required.

– “pulse_repetition_freq”: The value (Double, or List[Double], units: Hz) is the rate at which
individual pulses are delivered. Required.

– “digits”: the value (Integer) is the number of digits of precision used in saving the waveform to
file. Required.

• “BIPHASIC_PULSE_TRAIN_Q_BALANCED_UNEVEN_PW”: This waveform consists of biphasic rectangular
pulses that are charged-balanced (i.e., the charge of the first phase is equal to the charge of the second
phase), but can be defined to be asymmetrical, such that the two phases can have different durations, as
defined by “pulse_width_1” and “pulse_width_2”. Further, the two phases of the biphasic pulses
may be spaced by a gap defined by “inter_phase”.

– “pulse_width_1”: The value (Double, or List[Double], units: milliseconds) is the duration
(“width”) of the first phase (positive amplitude) in the biphasic rectangular pulse. Required.

– “pulse_width_2”: The value (Double, or List[Double], units: milliseconds) is the duration
(“width”) of the second phase (negative amplitude) in the biphasic rectangular pulse. Required.

– “inter_phase”: The value (Double, or List[Double], units: milliseconds) is the duration of time
between the primary and secondary phases in the biphasic rectangular pulse (amplitude is 0). Re-
quired.

66 Chapter 10. JSON file parameter guide

ASCENT, Release v1.1.2

– “pulse_repetition_freq”: The value (Double, or List[Double], units: Hz) is the rate at which
individual pulses are delivered. Required.

– “digits”: The value (Integer) is the number of digits of precision used in saving the waveform to
file. Required.

• “EXPLICIT”

– “index”: The value (Integer) is the index of the explicit user-provided waveform stored in config/
user/waveforms/<waveform index>.dat with the time step on the first line followed by the
current amplitude value (unscaled, maximum amplitude +/- 1) at each time step on subsequent lines.
Required.

– “dt_atol”: The value (Double, units: milliseconds) is the tolerance allowed between the time step
defined in the explicit waveform file and the timestep used in the NEURON simulations (see “global”
above). If the difference in time step is larger than “dt_atol”, the user’s explicit waveform is inter-
polated and resampled at the “global” timestep used in NEURON using SciPy’s Signal Processing
package (scipy.signal) [2]. Required.

– “period_repeats”: The number of times (Integer) the input signal is repeated between when the
stimulation turns “on” and “off”. The signal is padded with zeros between simulation start (i.e., t=0)
and “on”, as well as between “off” and “end”. Additionally, the signal is padded with zeros between
“on” and “off” to accommodate for any extra time after the number of period repeats and before
“off”. Required.

“intracellular_stim”: The value (JSON Object) contains key-value pairs to define the settings of the
monophasic pulse train of the intracellular stimulus (S31 and S32 Text). Required.

• “times”: The key-value pairs define the time durations characteristic of the intracellular stimulation.
Required.

– “pw”: The value (Double, units: milliseconds) defines the pulse duration of the intracellular stimu-
lation. Required.

– “IntraStim_PulseTrain_delay”: The value (Double, units: milliseconds) defines the delay
from the start of the simulation (i.e., t=0) to the onset of the intracellular stimulation. Required.

– “IntraStim_PulseTrain_dur”: The value (Double, units: milliseconds) defines the duration
from the start of the simulation (i.e., t=0) to the end of the intracellular stimulation. Required.

• “pulse_repetition_freq”: The value (Double, units: Hz) defines the intracellular stimulation fre-
quency. Required.

• “amp”: The value (Double, units: nA) defines the intracellular stimulation amplitude. Required.

• “ind”: The value (Integer) defines the section index (unmyelinated) or node of Ranvier number (myeli-
nated) receiving the intracellular stimulation. The number of sections/nodes of Ranvier is indexed from 0
and starts at the end of the fiber closest to z = 0. Required.

“saving”: The value (JSON Object) contains key-value pairs to define which state variables NEURON will
save during its simulations and at which times/locations (S31 and S32 Text). Required.

• “space”:

– “vm”: The value (Boolean), if true, tells the program to save the transmembrane potential at all seg-
ments (unmyelinated) and sections (myelinated) at the time stamps defined in “times” (see below).
Required.

– “gating”: The value (Boolean), if true, tells the program to save channel gating parameters at all
segments (unmyelinated) and sections (myelinated) at the time values defined in “times” (see below).
Note: Only implemented for MRG fibers. Required.

10.5. sim.json 67

ASCENT, Release v1.1.2

– “times”: The value (List[Double], units: milliseconds) contains the times in the simulation at
which to save the values of the state variables (i.e., “gating” or “vm”) that the user has selected to
save for all segments (unmyelinated) and sections (myelinated). Required.

• “time”:

– “vm”: The value (Boolean), if true, tells the program to save the transmembrane potential at each
time step at the locations defined in “locs” (see below). Required.

– “gating”: The value (Boolean), if true, tells the program to save the channel gating parameters at
each time step at the locations defined in “locs” (see below). Note: Only implemented for MRG
fibers. Required.

– “istim”: The value (Boolean), if true, tells the program to save the applied intracellular stimulation
at each time step. Required.

– “locs”: The value (List[Double] or String, units: none) contains the locations (defined as a decimal
percentage, e.g., 0.1 = 10% along fiber length) at which to save the values of the state variables
that the user has selected to save for all timesteps. Alternatively, the user can use the value “all”
(String) to prompt the program to save the state variables at all segments (unmyelinated) and sections
(myelinated). Required.

• “end_ap_times”:

– “loc_min”: The value (Double) tells the program at which location to save times at which Vm
passes the threshold voltage (defined below) with a positive slope. The value must be between 0 and
1, and less than the value for “loc_max”. Be certain not to record from the end section (i.e., 0) if
it is passive. A value 0 corresponds to z=0, and a value of 1 corresponds to z=length of proximal
domain. Required if this JSON object (which is optional) is included.

– “loc_max”: The value (Double) tells the program at which location to save times at which Vm
passes the threshold voltage (defined below) with a positive slope. The value must be between 0 and
1, and greater than the value for “loc_min”. Be certain not to record from the end section (i.e., 1)
if it is passive. A value 0 corresponds to z=0, and a value of 1 corresponds to z=length of proximal
domain. Required if this JSON object (which is optional) is included.

– “threshold”: The value (Double, units: mV) is the threshold value for Vm to pass for an action
potential to be detected. Required if this JSON object (which is optional) is included.

• “runtimes”: The value (Boolean), if true, tells the program to save the NEURON runtime for either the
finite amplitude or binary search for threshold simulation. If this key-value pair is omitted, the default
behavior is False.

“protocol”:

• “mode”: The value (String) is the “NeuronRunMode” that tells the program to run activation thresholds,
block thresholds, or a list of extracellular stimulation amplitudes (S31 and S32 Text). Required.

– As listed in Enums (S6 Text), known “NeuronRunModes” include

∗ “ACTIVATION_THRESHOLDS”

∗ “BLOCK_THRESHOLDS”

∗ “FINITE_AMPLITUDES”

• “initSS”: The value (Double, hint: should be negative or zero, units: milliseconds) is the time allowed
for the system to reach steady state before starting the simulation proper. Required.

• “dt_initSS”: The value (Double, units: milliseconds) is the time step (usually larger than “dt” in “global”
JSON Object (see above)) used to reach steady state in the NEURON simulations before starting the sim-
ulation proper. Required.

68 Chapter 10. JSON file parameter guide

ASCENT, Release v1.1.2

• “amplitudes”: The value (List[Double], units: mA) contains extracellular current amplitudes to simu-
late. Required if running “FINITE_AMPLITUDES” for “NeuronRunMode”.

• “threshold”: The JSON Object contains key-value pairs to define what constitutes threshold
being achieved. Required for threshold finding protocols (i.e., “ACTIVATION_THRESHOLDS” and
“BLOCK_THRESHOLDS”) only.

– “value”: The value (Double, units: mV) is the transmembrane potential that must be crossed with
a rising edge for the NEURON code to count an action potential. Required for threshold finding
protocols (i.e., “ACTIVATION_THRESHOLDS” and “BLOCK_THRESHOLDS”) only.

– “n_min_aps”: The value (Integer) is the number of action potentials that must be detected for
the amplitude to be considered above threshold. Required for threshold finding protocols (i.e.,
“ACTIVATION_THRESHOLDS” and “BLOCK_THRESHOLDS”) only.

– “ap_detect_location”: The value (Double) is the location (range 0 to 1, i.e., 0.9 is 90% of
the fiber length in the +z-direction) where action potentials are detected for threshold finding
protocols (i.e., “ACTIVATION_THRESHOLDS” or “BLOCK_THRESHOLDS”). Note: If using fiber
models with passive end nodes, the user should not try to detect action potentials at either end
of the fiber. Required for threshold finding protocols (i.e., “ACTIVATION_THRESHOLDS” and
“BLOCK_THRESHOLDS”) only.

• “bounds_search”: the value (JSON Object) contains key-value pairs to define how to search for upper
and lower bounds in binary search algorithms (S22 Text). Required for threshold finding protocols (i.e.,
“ACTIVATION_THRESHOLDS” and “BLOCK_THRESHOLDS”).

– “mode”: the value (String) is the “SearchAmplitudeIncrementMode” that tells the program how
to change the initial upper and lower bounds for the binary search; the bounds are adjusted iteratively
until the initial upper bound (i.e., “top”) activates/blocks and until the initial lower bound does not
activate/block, before starting the binary search (S22 Text). Required.

∗ As listed in Enums (S6 Text), known “SearchAmplitudeIncrementModes” include:

· “ABSOLUTE_INCREMENT”: If the current upper bound does not activate/block, increase
the upper bound by a fixed “step” amount (e.g., 0.001 mA). If the lower bound acti-
vates/blocks, decrease the lower bound by a fixed “step” amount (e.g., 0.001 mA).

· “PERCENT_INCREMENT”: If the upper bound does not activate/block, increase the upper
bound by a “step” percentage (e.g., 10 for 10%). If the lower bound activates/blocks,
decrease the lower bound by a “step” percentage (e.g., 10 for 10%).

– “top”: The value (Double) is the upper-bound stimulation amplitude first tested in a binary search
for thresholds. Required.

– “bottom”: The value (Double) is the lower-bound stimulation amplitude first tested in a binary
search for thresholds. Required.

– “step”: the value (Double) is the incremental increase/decrease of the upper/lower bound in the
binary search. Required.

∗ If “ABSOLUTE_INCREMENT”, the value (Double, unit: mA) is an increment in milliamps.

∗ If “PERCENT_INCREMENT”, the value (Double, units: %) is a percentage (e.g., 10 is 10%).

– “scout”: The value (JSONObject) is a set of key-value pairs specifying a previously run “scout”
Sim for the same Sample. Use this feature to reduce CPU time required for many fibers placed in the
same inner for a new Sim or Model. If this key is present, ASCENT will look for thresholds in n_sim
folders in your ASCENT_NSIM_EXPORT_PATH (i.e., the path you set in config/system/env.json)
for fiber0 of each inner for each n_sim. The program will load this threshold value and use it as a
starting point for the threshold bounds for each inner in your new Sim. The upper- and lower-bounds
in the binary search will be “bounds_search” -> “step” % higher and lower, respectively, of the scout

10.5. sim.json 69

ASCENT, Release v1.1.2

Sim’s fiber0 threshold. All parameters except fiber location (i.e., “fibers” -> “xy_location” in Sim)
must match between the scout Sim and the current Sim, since the n_sim indices must match between
the scout Sim and current Sim. If this key (“scout”) is present, the program will ignore the threshold
bounds “top” and “bottom” in “protocol” -> “bounds_search” (Unless the specified scout Sim is not
found, in which case “top” and “bottom” will be used). Optional.

∗ "model": The value (Integer) indicates which model index to use for the scout Sim. Required
if "scout" is used.

∗ "sim": The value (Integer) indicates which sim index to use fo the scout Sim (can be the
current Sim’s index). Required if "scout" is used.

• “termination_criteria”: Required for threshold finding protocols (i.e.,
“ACTIVATION_THRESHOLDS” and “BLOCK_THRESHOLDS”) (S22 Text).

– “mode”: The value (String) is the “TerminationCriteriaMode” that tells the program when the
upper and lower bound have converged on a solution of appropriate precision. Required.

∗ As listed in Enums (S6 Text), known “TerminationCriteriaModes” include:

· “ABSOLUTE_DIFFERENCE”: If the upper bound and lower bound in the binary search
are within a fixed “tolerance” amount (e.g., 0.001 mA), the upper bound value is thresh-
old.

· “tolerance”: The value (Double) is the absolute difference between upper and lower
bound in the binary search for finding threshold (unit: mA). Required.

· “PERCENT_DIFFERENCE”: If the upper bound and lower bound in the binary search
are within a relative “percent” amount (e.g., 1%), the upper bound value is threshold.
This mode is generally recommended as the ABSOLUTE_DIFFERENCE approach requires
adjustment of the “tolerance” to be suitable for different threshold magnitudes.

· “percent”: The value (Double) is the percent difference between upper and lower
bound in the binary search for finding threshold (e.g., 1 is 1%). Required.

“supersampled_bases”: Optional. Required only for either generating or reusing super-sampled bases. This
can be a memory efficient process by eliminating the need for long-term storage of the bases/ COMSOL *.mph
files. Control of “supersampled_bases” belongs in Sim because the (x,y)-fiber locations in the nerve are
determined by Sim. The potentials are sampled densely along the length of the nerve at (x,y)-fiber locations
once so that in a future pipeline run different fiber types can be simulated at the same location in the nerve cross
section without loading COMSOL files into memory.

• “generate”: The value (Boolean) indicates if the program will create super-sampled fiber coordinates and
super-sampled bases (i.e., sampled potentials from COMSOL). Required only if generating ss_bases/.

• “use”: The value (Boolean) if true directs the program to interpolate the super-sampled bases to create
the extracellular potential inputs for NEURON. If false, the program will sample along the length of the
COMSOL FEM at the coordinates explicitly required by “fibers”. Required only if generating ss_bases/.

• “dz”: The value (Double, units: micrometer) is the spatial sampling of the super-sampled bases. Required
only if generating ss_bases/.

• “source_sim”: The value (Integer) is the Sim index that contains the super-sampled bases. If the user
sets both “generate” and “use” to true, then the user should indicate the index of the current Sim here.
Required only if generating ss_bases/.

5. Example:

{
"pseudonym": "My example sim",
"n_dimensions": 3,

(continues on next page)

70 Chapter 10. JSON file parameter guide

ASCENT, Release v1.1.2

(continued from previous page)

"active_srcs": {
"CorTec300.json": [[1, -1]]

},
"fibers": {
"mode": "MRG_DISCRETE",
"xy_trace_buffer": 5.0,
"z_parameters": {

"diameter": [1, 2, 5.7, 7.3, 8.7, 10],
"min": 0,
"max": 12500,
"full_nerve_length": False,
"offset": 0,
"absolute_offset": 0,
"seed": 123

},
"xy_parameters": {
"mode": "UNIFORM_DENSITY",
"top_down": true,
"minimum_number": 1, // top_down is true only
"target_density": 0.0005, // top_down is true only
"maximum_number": 100, // top_down is false only
"target_number": 50, // top_down is false only
"seed": 123

}
},
"waveform": {
"global": {
"dt": 0.001,
"on": 1,
"off": 49,
"stop": 50

},
"BIPHASIC_PULSE_TRAIN": {
"pulse_width": 0.1,
"inter_phase": 0,
"pulse_repetition_freq": 1,
"digits": 1

}
},
"intracellular_stim": {
"times": {
"pw": 0,
"IntraStim_PulseTrain_delay": 0,
"IntraStim_PulseTrain_dur": 0

},
"pulse_repetition_freq": 0,
"amp": 0,
"ind": 2

},
"saving": {
"space": {
"vm": false,

(continues on next page)

10.5. sim.json 71

ASCENT, Release v1.1.2

(continued from previous page)

"gating": false,
"times": [0]

},
"time": {
"vm": false,
"gating": false,
"istim": false,
"locs": [0]

},
"ap_end_times": {
"loc_min": 0.1,
"loc_max": 0.9,
"threshold": -30

},
"runtimes": false

},
"protocol": {
"mode": "ACTIVATION_THRESHOLD",
"initSS": -200,
"dt_initSS": 10,
"threshold": {
"value": -30,
"n_min_aps": 1,
"ap_detect_location": 0.9

},
"bounds_search": {
"mode": "PERCENT_INCREMENT",
"top": -0.1,
"bottom": -0.01,
"step": 10

},
"termination_criteria": {
"mode": "PERCENT_DIFFERENCE",
"percent": 1

}
}
"supersampled_bases": {
"generate": true,
"use": true,
"dz": 1,
"source_sim": 1

}
}

72 Chapter 10. JSON file parameter guide

ASCENT, Release v1.1.2

10.6 query_criteria.json

1. Named file: config/user/query_criteria/<query criteria index>.json

2. Purpose: Used to guide the Query class’s searching algorithm in the run() and _match() methods. This is
used for pulling Sample, Model, or Sim indices for data analysis. The query_criteria.json dictates if a
given Sample, Model, or Sim fit the user’s restricted parameter values (S33 Text).

3. Syntax:

{
"partial_matches": Boolean,
"include_downstream": Boolean,
"sample": { // can be empty, null, or omitted
},
"model": { // can be empty, null, or omitted
},
"sim": { // can be empty, null, or omitted
},
"indices": {
"sample": null, Integer, or [Integer, ...],
"model": null, Integer, or [Integer, ...],
"sim": null, Integer, or [Integer, ...]

}
}

4. Properties:

“partial_matches”: The value (Boolean) indicates whether Query should return configuration indices for
Sample, Model, or Sim that are a partial match (i.e., a subset of the parameters were found, but not all).

“include_downstream": The value (Boolean) indicates whether Query should return indices of downstream
(Sample > Model > Sim) configurations that exist if match criteria are not provided for them.

“sample”: The value is a JSON Object that mirrors the path to the parameters of interest in Sample and their
value(s).

“model”: The value is a JSON Object that mirrors the path to the parameters of interest in Model and their
value(s).

“sim”: The value is a JSON Object that mirrors the path to the parameters of interest in Sim and their value(s).

“indices”:

• “sample”: The value (null, Integer, or [Integer, . . .]) for explicitly desired Sample indices

• “model”: The value (null, Integer, or [Integer, . . .]) for explicitly desired Model indices

• “sim”: The value (null, Integer, or [Integer, . . .]) for explicitly desired Sim indices

Note: you can have BOTH lists of desired Sample, Model, and Sim indices AND search criteria in one
query_criteria.json.

5. Example:

{
"partial_matches": true,
"include_downstream": true,
"sample": {

(continues on next page)

10.6. query_criteria.json 73

ASCENT, Release v1.1.2

(continued from previous page)

"sample": "Rat16-3"
},
"model": {
"medium": {
"proximal": {
"length": [1000, 2000]

}
}

},
"sim": null,
"indices": {
"sample": null,
"model": null,
"sim": null

}
}

10.7 env.json

1. Named file: config/system/env.json

2. Purpose: The file contains key-value pairs for paths. The file can be automatically populated by running
env_setup.py (S2 Text). Note that we have prepended all of the keys in this file with “ASCENT” because
these key-value pairs are directly stored as environment variables, so the “ASCENT” key distinguishes these
pairs from other paths that may be present on your computer.

3. Syntax: To declare this entity in config/system/env.json, use the following syntax:

{
"ASCENT_COMSOL_PATH": String,
"ASCENT_JDK_PATH": String,
"ASCENT_PROJECT_PATH": String,
"ASCENT_NSIM_EXPORT_PATH": String

}

4. Properties:

“ASCENT_COMSOL_PATH”: The value (String) is the path for your local COMSOL installa-
tion. “ASCENT_JDK_PATH”: The value (String) is the path for your local Java JDK installation.
“ASCENT_PROJECT_PATH”: The value (String) is the path for your local ASCENT repository.
“ASCENT_NSIM_EXPORT_PATH”: The value (String) is the path where the pipeline will save NEURON
simulation directories to submit.

5. Example:

• Windows:

{
"ASCENT_COMSOL_PATH": "C:\\Program Files\\COMSOL\\COMSOL55\\Multiphysics",
"ASCENT_JDK_PATH": "C:\\Program Files\\Java\\jdk1.8.0_221\\bin",
"ASCENT_PROJECT_PATH": "D:\\Documents\\ascent",
"ASCENT_NSIM_EXPORT_PATH": "D:\\Documents\\ascent\\submit"

}

74 Chapter 10. JSON file parameter guide

ASCENT, Release v1.1.2

• MacOS

{
"ASCENT_COMSOL_PATH": "/Applications/COMSOL55/Multiphysics ",
"ASCENT_JDK_PATH":
"/Library/Java/JavaVirtualMachines/jdk1.8.0_221.jdk/Contents/Home/bin/",
"ASCENT_PROJECT_PATH": "/Users/ericmusselman/Documents/ascent",
"ASCENT_NSIM_EXPORT_PATH": "/Users/ericmusselman/Documents/ascent/submit"

}

10.8 exceptions.json

1. Named file: config/system/exceptions.json

2. Purpose: The file contains a list of JSON Objects, one for each documented pipeline exception. Note that this file
is a single large Array, so it is wrapped in square brackets, as opposed to all other JSON files, which are wrapped
in curly braces.

3. Syntax: To declare this entity in config/system/env.json, use the following syntax:

[
{
"code": Integer,
"text": String

},
...

]

4. Properties:

“code”: The value (Integer) is an identifier that enables easy reference to a specific exception using Exception-
able’s self.throw(<code_index>). This value must be unique because the Exeptionable class uses this value
to find any given exception. We suggest that you increment the code with each successive exception (akin to
indexing), but any number will work as long as its value is unique.

“text”: The value (String) is a message to the user explaining why the pipeline failed.

5. Example:

[
{
"code": 0,
"text": "Invalid code (out of bounds, starting at index 1)."

},
...

]

10.8. exceptions.json 75

ASCENT, Release v1.1.2

10.9 materials.json

1. Named file: config/system/materials.json

2. Purpose: Stores default material and tissue properties in the pipeline for use in the 3D FEM.

3. Syntax: To declare this entity in config/system/materials.json, use the following syntax:

{
"conductivities": {
"endoneurium": { // example syntax for anisotropic medium
"value": "anisotropic",
"sigma_x": String,
"sigma_y": String,
"sigma_z": String,
"unit": "String",
"references": {
"1": String,
...,
"n": String

}
},
"epineurium": { // example syntax for isotropic medium
"value": "String",
"unit": "String",
"references": {
"1": String,
...,
"n": String

}
}

}
}

4. Properties:

“<material>”: The value is a JSON Object containing the conductivity value and units as Strings. Though us-
ing strings may seem odd for storing conductivity values, we do this because we read them directly into COMSOL
to define materials, and COMSOL expects a string (which it evaluates as expression).

• “value”: The conductivity of the material (if not “anisotropic”, the value must be in units S/m). If the
value is “anisotropic”, the system is expecting additional keys for the values in each Cartesian direction:

– “sigma_x”: The value (String) is the conductivity in the x-direction (unit: S/m)

– “sigma_y”: The value (String) is the conductivity in the y-direction (unit: S/m)

– “sigma_z”: The value (String) is the conductivity in the z-direction (unit: S/m)

• “unit”: The unit of the associated conductivity in square brackets (must be “[S/m]”)

• "references": The value (Dictionary) contains citations to the source of the material conductivity used.
The contents are non-functional (i.e., they are not used in any of the code), but they serve as a point
of information reference for good bookkeeping. Each reference used is assigned its own key-value pair
(Optional).

5. Example:

76 Chapter 10. JSON file parameter guide

ASCENT, Release v1.1.2

• See: config/system/materials.json to see all built-in material definitions, which the user may add
to.

{
"conductivities": {
"endoneurium": {

"value": "anisotropic",
"sigma_x": "1/6",
"sigma_y": "1/6",
"sigma_z": "1/1.75",
"unit": "[S/m]"

},
"epineurium": {
"value": "1/6.3",
"unit": "[S/m]"

}
}

}

Note: Perineurium can be represented in the pipeline as either a meshed domain with a finite thickness or as
a thin layer approximation, but the conductivity value used for either method is defined in materials.json
unless the “PerineuriumResistivityMode” is “MANUAL” and the conductivity is defined explicitly in Model
(Definition of perineurium).

10.10 ci_peri_thickness.json

1. Named file: config/system/ci_peri_thickness.json

2. Purpose: The file stores “PerineuriumThicknessMode” definitions that are referenced in sample.json
(“ci_perineurium_thickness”) for assigning perineurium thickness values to fascicles for a mask of in-
ners if “ci_perineurium_thickness” is not specified as “MEASURED”. The calculated thickness may be
explicitly built in the FEM geometry and meshed (i.e., if “use_ci” in Model is false) or may only be used for
calculating the contact impedance if modeling the perineurium with a thin layer approximation (S14 and S28
Text).

3. Syntax:

{
"ci_perineurium_thickness_parameters": {
"GRINBERG_2008": {

"a": Double,
"b": Double

},
...

}
}

4. Properties:

“<PerineuriumThicknessMode>”: JSON Object that contains key-value pairs defining the relationship be-
tween fascicle diameter (micrometers) and perineurium thickness. Required.

• “a”: Value (Double, units: µm/µm) as in thickness = a*x + b

• “b”: Value (Double, units: µm) as in thickness = a*x + b

10.10. ci_peri_thickness.json 77

ASCENT, Release v1.1.2

5. Example:

• See: config/system/ci_peri_thickness.json to see all built-in PerineuriumThicknessMode re-
lationships.

10.11 mesh_dependent_model.json

1. Named file: config/system/mesh_dependent_model.json

2. Purpose: This file is not to be changed unless a user adds new parameters to Model. The use of this file happens
behind the scenes. The file informs the ModelSearcher class (S26 Text) if two model configurations constitute
a “mesh match” (i.e., that the mesh from a previously solved and identical model can be recycled). Note that if
you modify the structure of model.json, the pipeline expects this file’s structure to be changed as well. If the
Boolean for a parameter is true, then the parameter values between two Models must be identical to constitute
a “mesh match”. If the Boolean for a parameter is false, then the parameter values between the two Models can
be different and still constitute a “mesh match”. The process of identifying “mesh matches” is automated and is
only performed if the “recycle_meshes” parameter in Run is true.

3. Syntax: To declare this entity in config/system/mesh_dependent_model.json, use the following syntax:

• The same key-value structure pair as in Model, but the values are of type Boolean

– true: The parameter values between the two Model configurations must be identical to constitute a
“mesh match”.

– false: The parameter values between the two Model configurations can be different and still consti-
tute a “mesh match”.

4. Properties:

See: model.json

5. Example:

See: config/system/mesh_dependent_model.json

• Note: The user should not need to change this file unless adding new parameters to Model for ex-
panded/modified pipeline functionality.

10.12 References

1. Weerasuriya A, Spangler RA, Rapoport SI, Taylor RE. AC impedance of the perineurium of the frog sciatic nerve.
Biophys J. 1984 Aug;46(2):167–74. Available from: https://dx.doi.org/10.1016%2FS0006-3495(84)84009-6

2. Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy T, Cournapeau D, et al. SciPy 1.0: fundamental
algorithms for scientific computing in Python. Nat Methods [Internet]. 2020;17(3):261–72. Available from:
https://doi.org/10.1038/s41592-019-0686-2

78 Chapter 10. JSON file parameter guide

https://dx.doi.org/10.1016%2FS0006-3495(84)84009-6
https://doi.org/10.1038/s41592-019-0686-2

CHAPTER

ELEVEN

PYTHON UTILITY CLASSES

11.1 Configurable

Configurable is inherited by other Python classes in the ASCENT pipeline to grant access to parameter and data config-
uration JSON files loaded to memory. Configurable has built-in exceptions that it throws which are indexed negatively
(-1 and below by convention) because it is intrinsically unable to inherit from Exceptionable (errors indexed +1 and
above by convention), which, in turn, (Exceptionable) is configured by inheriting the Configurable class.

Configurable is an important class for developers to understand because it is the mechanism by which instances of our
Python classes inherit their properties from JSON configuration files (e.g., sample.json, model.json, sim.json,
fiber_z.json). The Configurable class takes three input parameters:

11.1.1 "SetupMode" (from Enums, S6 Text)

Either NEW or OLD which determines if Configurable loads a new JSON (from file) or uses data that has already been
created in Python memory as a dictionary or list, respectively.

11.1.2 ConfigKey (from Enums, S6 Text)

The ConfigKey indicates the choice of configuration data type and is also the name of the configuration JSON file (e.g.,
sample.json, model.json, sim.json, run.json, env.json).

11.1.3 Config:

The Config input to Configurable can take one of three data types. If “SetupMode” is “OLD”, the value can be a
dictionary or list of already loaded configuration data. If “SetupMode” is “NEW”, the value must be a string of the
file path to the configuration file to be loaded into memory.

11.1.4 Example use of Configurable:

When the Sample class is instantiated in Runner, it inherits functionality from Configurable (see Sample constructor
__init__(self, exception_config: list) in src/core/sample.py).

After the Sample class is instantiated, the Sample configuration (index indicated in Run) is added to the Sample class
with:

sample.add(SetupMode.OLD, Config.SAMPLE, all_configs[Config.SAMPLE.value][0])

With the Sample configuration available to the Sample class, the class can access the contents of the JSON dictionary.
For example, in populate(), the Sample class gets the length of the scale bar from Sample with the following line:

79

ASCENT, Release v1.1.2

self.search(Config.SAMPLE, ‘scale’, ‘scale_bar_length’)

11.2 Exceptionable

Exceptionable is a centralized way to organize and throw exceptions (errors) to the user’s console. Exceptionable in-
herits functionality from Configurable. Exceptionable, like Configurable, is initialized with “SetupMode”, ConfigKey,
and a Config. However, the data contents for Exceptionable are specifically a list of exceptions stored in config/
system/exceptions.json. The contents of the exceptions configuration file is a list of numbered errors with an
associated text description. These contents, along with the path of the script which called exceptionable, are listed in
the event of a raised exception.

11.3 Saveable

Saveable is a simple Python class that, when inherited by a Python class (e.g., Sample and Simulation, described in S13
and S30 Text, respectively) enables the class to save itself using Saveable’s save() method. Using pickle.dump(),
the object is saved as a Python object to file at the location of the destination path, which is an input parameter to
save().

80 Chapter 11. Python utility classes

CHAPTER

TWELVE

SUBMITTING NEURON JOBS

We provide scripts for the user to submit NEURON jobs in src/neuron/. It is suggested that the script ending in
“.sh” is used for Linux-based cluster contexts; on the other hand, if running locally, the environment setup will likely
be more specific to the machine, and the script ending in “.py” is the better choice. The submit.sh acts as a buffer for
submit.py to set up the environment and load appropriate modules for job submission. The submit.py script takes the
input of the Run configuration and submits a NEURON call for each independent fiber within an n_sim/. These scripts
are called using similar syntax as pipeline.py: “./submit.<ext> <run indices>,” where <run indices> is
a space-separated list of integers. Note that these submission scripts expect to be called from a directory with the
structure generated by Simulation.export_nsims() at the location defined by “ASCENT_NSIM_EXPORT_PATH” in
env.json.

12.1 Cluster submissions

When using a high-performance computing cluster running SLURM:

1. Set your default parameters, particularly your partition (can be found in "config/system/slurm_params.
json"). The partition you set here (default is “common”) will apply to all submit.py runs.

2. Optionally, set your "submission_context" to "auto", and configure your run.json with the appropriate
hostname prefix. (Only necessary if you plan to submit runs both locally and on a cluster, see S8 Text.)

3. Many parameters which submit.py sources from JSON configuration files can be overridden with command
line arguments. For more information, see Command-Line Arguments.

81

ASCENT, Release v1.1.2

82 Chapter 12. Submitting NEURON jobs

CHAPTER

THIRTEEN

MORPHOLOGY FILES

Each mask must be binary (i.e., white pixels (‘1’) for the segmented tissue and black pixels (‘0’) elsewhere) and must use
Tagged Image File Format (i.e., .tif, or .tiff). All masks must be defined within the same field of view, be the same
size, and be the same resolution. To convert between pixels of the input masks to dimensioned length (micrometers),
the user must specify a “ScaleInputMode” in Sample (S7 and S8 Text). If using the mask input mode, a mask for the
scale bar (s.tif) of known length (oriented horizontally) must be provided (see “Scale Bar” in Fig 2) and the length of
the scale bar must be indicated in Sample (S7 and S8 Text). If using the ratio input mode, the user explicitly specifies
the micrometers/pixel of the input masks in Sample (S7 and S8 Text), and no scale bar image is required.

The user is required to set the “MaskInputMode” in Sample (“mask_input”) to communicate the contents of the
segmented histology files (S7 and S8 Text). Ideally, segmented images of boundaries for both the “outers” (o.tif)
and “inners” (i.tif) of the perineurium will be provided, either as two separate files (o.tif and i.tif) or com-
bined in the same image (c.tif) (see “Inners”, “Outers”, and “Combined” in Fig 2). However, if only inners are
provided—which identify the outer edge of the endoneurium—a surrounding perineurium thickness is defined by the
“PerineuriumThicknessMode” in Sample (“ci_perineurium_thickness”); the thickness is user-defined, relat-
ing perineurium thickness to features of the inners (e.g., their diameter). It should be noted that defining nerve mor-
phology with only inners does not allow the model to represent accurately fascicles containing multiple endoneurium
inners within a single outer perineurium boundary (“peanut” fascicles; see an example in Fig 2); in this case, each
inner trace will be assumed to represent a single independent fascicle that does not share its perineurium with any other
inners; more accurate representation requires segmentation of the “outers” as well.

The user is required to set the “NerveMode” in Sample (“nerve”) to communicate the contents of the segmented
histology files (S7 and S8 Text). The outer nerve boundary, if present, is defined with a separate mask (n.tif).
In the case of a compound nerve with epineurium, the pipeline expects the outer boundary of the epineurium to be
provided as the “nerve”. In the case of a nerve with a single fascicle, no nerve mask is required—in which case
either the outer perineurium boundary (if present) or the inner perineurium boundary (otherwise) is used as the nerve
boundary—although one may be provided if epineurium or other tissue that would be within the cuff is present in the
sample histology.

Lastly, an “orientation” mask (a.tif) can be optionally defined. This mask should be all black except for a small portion
that is white, representing the position to which the cuff must be rotated. The angle is measured relative to the centroid
of the nerve/singular fascicle, so this image should be constructed while referencing n.tif (or, if monofascicular,
i.tif, o.tif, or c.tif). By default, the 0º position of our cuffs correspond with the coordinate halfway along the
arc length of the cuff inner diameter (i.e., the cuff will be rotated such that the sample center, cuff contact center, and
centroid of the white portion of a.tif form a line) while the circular portion of a cuff’s diameter is centered at the origin
(Note: this rotation process uses “angle_to_contacts_deg” and "fixed_point" in a “preset” cuff’s JSON file,
see S17 and S19 Text). If a.tif is provided, other cuff rotation methods (“cuff_shift” in Model, which calculate
“pos_ang”) are overridden.

The user must provide segmented image morphology files, either from histology or the
mock_morphology_generator.py script, with a specific naming convention in the input/ directory.

• Raw RGB image, to be available for convenience and used for data visualization: r.tif (optional).

• Combined (i.e., inners and outers): c.tif.

83

https://doi.org/10.1371/journal.pcbi.1009285.g002
https://doi.org/10.1371/journal.pcbi.1009285.g002
https://doi.org/10.1371/journal.pcbi.1009285.g002

ASCENT, Release v1.1.2

• Inners: i.tif

– An “inner” is the internal boundary of the perineurium that forms the boundary between the perineurium
and the endoneurium.

• Outers: o.tif

– An “outer” is the external boundary of the perineurium that forms the boundary between the perineurium
and the epineurium or extraneural medium.

• Scale bar: s.tif (scale bar oriented horizontally, required unless scale input mode is set to ratio).

• Nerve: n.tif (optional for monofascicular nerves).

• Orientation: a.tif (optional).

For an example of input files, see Fig 2. The user must properly set the “MaskInputMode” in Sample (“mask_input”)
for their provided segmented image morphology files (S7 and S8 Text).

84 Chapter 13. Morphology Files

https://doi.org/10.1371/journal.pcbi.1009285.g002

CHAPTER

FOURTEEN

PYTHON MOCKSAMPLE CLASS FOR CREATING BINARY MASKS OF
NERVE MORPHOLOGY

MockSample is a Python class that manages the data and contains all operations to create binary masks of mock nerve
morphology (i.e., nerve: n.tif, inners: i.tif, and scale bar: s.tif) to use as inputs to the pipeline.

The user defines the parameter values in config/user/mock_samples/<mock_sample_index>.json (with a tem-
plate provided in config/templates/mock_sample.json). The mock sample morphology is then created using
the JSON file by executing “python run mock_morphology_generator <mock_sample_index>” at the project
root. The mock morphology generator uses the MockSample Python class to create binary images of the nerve, inner
perineurium traces (fascicles), and the scale bar in input/<NAME>/ (NAME is analogous to the “sample” parameter in
Sample, following the standard naming convention (S7 and S8 Text)), which allow the pipeline to function as if binary
images of segmented histology were provided. The <mock_sample_index>.json file and the resulting segmented
nerve morphology files are automatically saved in input/<NAME>/.

MockSample is Exceptionable, Configurable, and has instance attributes of “nerve” and a list “fascicles”. Af-
ter the MockSample class is initialized, a mock_sample.json file is added to the class instance. The
mock_morphology_generator.py script configures an instance of the MockSample class using the first input ar-
gument, which references the index of a JSON file stored in config/user/mock_samples/.

In mock_morphology_generator.py, MockSample’s methods make_nerve() and make_fascicles() are called
to create ellipses for the nerve and fascicles in memory based on the parameters in the mock_sample.json file. Mock-
Sample’s methods ensure that the fascicles have a minimum distance between each fascicle boundary and the nerve
and between fascicle boundaries. For details on the parameters that define sample morphology using our mock nerve
morphology generator, see S7 Text for a description of mock_sample.json and S8 Text for details of the syntax/data type
of the key-value parameter pairs required to define a mock sample. Lastly, MockSample’s make_masks() method is
called on the class instance to create binary masks and save them as TIFs in the input/<NAME>/ directory.

85

ASCENT, Release v1.1.2

86 Chapter 14. Python MockSample class for creating binary masks of nerve morphology

CHAPTER

FIFTEEN

PYTHON CLASSES FOR REPRESENTING NERVE MORPHOLOGY
(SAMPLE)

The nerve cross section includes the outer nerve trace (if present; not required for monofascicular nerves) and, for
each fascicle, either a single “inner” perineurium trace or both “inner” and “outer” perineurium traces. We provide
automated control to correct for tissue shrinkage during histological processes [1] (S8 Text). Morphology metrics (e.g.,
nerve and fascicle(s) cross-sectional areas and centroids, major and minor axis lengths, and rotations of the best-fit
ellipses) are automatically reported in Sample (S8 Text).

15.1 Trace

Trace is the core Python class for handling a list of points that define a closed loop for a tissue boundary in a nerve
cross section (see “Tissue Boundaries” in Fig 2). Trace has built-in functionality for transforming, reporting, displaying,
saving, and performing calculations on its data contents and properties. Python classes Nerve, Fascicle, and Slide are
all special instances or hierarchical collections of Trace.

A Trace requires inputs of a set of (x,y)-points that define a closed loop and an exceptions JSON configuration file.
The z-points are assumed to be ‘0’. The Trace class already provides many built-in functionalities, but any further
user-desired methods needed either to mutate or access nerve morphology should be added to the Trace class.

Trace uses the OpenCV [2], Pyclipper [3], and Shapely [4] Python packages to support modifier methods (e.g., for
performing transformations):

• scale(): Used to assign dimensional units to points and to correct for shrinkage of nerve tissues during pro-
cessing of histology.

• rotate(): Performs a rigid rotational transformation of Trace about a point (positive angles are counter-
clockwise and negative are clockwise).

• shift(): performs a 2D translational shift to Trace (in the (x,y)-plane, i.e., the sample cross section).

• offset(): Offsets Trace’s boundary by a discrete distance from the existing Trace boundary (non-affine trans-
formation in the (x,y)-plane, i.e., the sample cross section).

• pymunk_poly(): Uses Pymunk to create a body with mass and inertia for a given Trace boundary (used in
deform(), the fascicle repositioning method, from the Deformable class).

• pymunk_segments(): Uses Pymunk to create a static body for representing intermediate nerve boundaries (used
in deform(), the fascicle repositioning method, from the Deformable class).

Trace also contains accessor methods:

• within(): Returns a Boolean indicating if a Trace is completely within another Trace.

• intersects(): Returns a Boolean indicating if a Trace is intersecting another Trace.

• centroid(): Returns the centroid of the best fit ellipse of Trace.

87

https://doi.org/10.1371/journal.pcbi.1009285.g002

ASCENT, Release v1.1.2

• area(): Returns the cross-sectional area of Trace.

• random_points(): Returns a random list of coordinates within the Trace (used to define axon locations within
the Trace).

Lastly, Trace has a few utility methods:

• plot(): Plots the Trace using formatting options (i.e., using the plt.plot format, see Matplotlib documentation
for details).

• deepcopy(): Fully copy an instance of Trace (i.e., copy data, not just a reference/pointer to original instance).

• write(): Writes the Trace data to the provided file format (currently, only COMSOL’s sectionwise format
—ASCII with .txt extension containing column vectors for x- and y-coordinates—is supported).

15.2 Nerve

Nerve is the name of a special instance of Trace reserved for representing the outer nerve (epineurium) boundary. It
functions as an alias for Trace. An instance of the Nerve class is created if the “NerveMode” in Sample (“nerve”) is
“PRESENT” (S8 Text)”

15.3 Fascicle

Fascicle is a class that bundles together instance(s) of Trace to represent a single fascicle in a slide. Fascicle can be
defined with either (1) an instance of Trace representing an outer perineurium trace and one or more instances of
Trace representing inner perineurium traces, or (2) an inner perineurium trace that is subsequently scaled to make
a virtual outer using Trace’s methods deepcopy() and offset() and the perineurium thickness defined by the
“PerineuriumThicknessMode” in Sample (“ci_perineurium_thickness”) (S8 Text). Upon instantiation, Fasci-
cle automatically validates that each inner instance of Trace is fully within its outer instance of Trace and that no inner
instance of Trace intersects another inner instance of Trace.

Fascicle contains methods for converting a binary mask image of segmented fascicles into instances of the
Fascicle class. The method used depends on the contents of the binary image inputs to the pipeline
as indicated by the “MaskInputMode” in Sample (“mask_input”) (i.e., INNER_AND_OUTER_SEPARATE,
INNER_AND_OUTER_COMPILED, or INNERS). For each of the mask-to-Fascicle conversion methods, the OpenCV
Python package finds material boundaries and reports their nested hierarchy (i.e., which inner Traces are within which
outer Traces, thereby associating each outer with one or more inners). The methods are expecting a maximum hierar-
chical level of 2: one level for inners and one level for outers.

• If separate binary images were provided containing contours for inners (i.tif) and outers (o.tif), then the
“MaskInputMode” in Sample (“mask_input”, S8 Text) is INNER_AND_OUTER_SEPARATE.

• If a single binary image was provided containing combined contours of inners and outers (c.tif), then the
“MaskInputMode” in Sample (“mask_input”, S8 Text) is INNER_AND_OUTER_COMPILED.

• If only a binary image was provided for contours of inners (i.tif), the “MaskInputMode” (“mask_input”,
S8 Text) in Sample is INNERS.

In all cases, the Fascicle class uses its to_list() method to generate the appropriate Traces. Additionally, Fascicle
has a write() method which saves a Fascicle’s inner (one or many) and outer Traces to files that later serve as inputs
for COMSOL to define material boundaries in a nerve cross section (sectionwise file format , i.e., ASCII with .txt
extension containing column vectors for x- and y-coordinates). Lastly, Fascicle has a morphology_data() method
which uses Trace’s area() and ellipse() methods to return the area and the best-fit ellipse centroid, axes, and
rotation of each outer and inner as a JSON Object to Sample (S8 Text).

88 Chapter 15. Python classes for representing nerve morphology (Sample)

https://matplotlib.org/contents.html
https://www.comsol.com/fileformats
https://www.comsol.com/fileformats

ASCENT, Release v1.1.2

15.4 Slide

The Slide class represents the morphology of a single transverse cross section of a nerve sample (i.e., nerve and fascicle
boundaries). An important convention of the pipeline is that the nerve is always translated such that its centroid (i.e.,
from best-fit ellipse) is at the origin (x,y,z) = (0,0,0) and then extruded in the positive (z)-direction in COMSOL. Slide
allows operations such as translation and plotting to be performed on all Nerve and Fascicle Traces that define a sample
collectively.

To create an instance of the Slide class, the following items must be defined:

• A list of instance(s) of the Fascicle class.

• “NerveMode” from Sample (“nerve”) (i.e., PRESENT as in the case of nerves with epineurium (n.tif) or
NOT_PRESENT otherwise, (S8 Text)).

• An instance of the Nerve class if "NerveMode" is PRESENT.

• A Boolean for whether to reposition fascicles within the nerve from “ReshapeNerveMode” in Sample (S8 Text).

• A list of exceptions.

The Slide class validates, manipulates, and writes its contents.

• In Slide’s validation() method, Slide returns a Boolean indicating if its Fascicles and Nerve Traces are over-
lapping or too close to one another (based on the minimum fascicle separation parameter in Sample).

• In Slide’s smooth_traces() method, Slide applies a smooth operation to each Trace in the slide, leveraging the
offset method, and applying smoothing based on smoothing parameters. defined in Sample (S8 Text).

• In Slide’s move_center() method, Slide repositions its contents about a central coordinate using Trace’s
shift() method available to both the Nerve and Fascicle classes (by convention, in ASCENT this is (x,y) =
(0,0)).

• In Slide’s reshaped_nerve() method, Slide returns the deformed boundary of Nerve based on the
“ReshapeNerveMode” in Sample (“reshape_nerve”, (S8 Text)) (e.g., CIRCLE).

• Using the methods of Nerve and Fascicle, which are both manifestations of Trace, Slide has its own methods
plot(), scale(), and rotate().

• Slide has its own write() method which determines the file structure to which the Trace contours are saved to
file in samples/<sample index>/slides/.

Note that the sample data hierarchy can contain more than a single Slide instance (the default being 0 as the cassette
index and 0 as the section index, hence the 0/0 seen in S3 Text Figure A) even though the pipeline data processing
assumes that only a single Slide exists. This will allow the current data hierarchy to be backwards compatible if multi-
Slide samples are processed in the future.

15.5 Map

Map is a Python class used to keep track of the relationship of the longitudinal position of all Slide instances for a Sample
class. At present, the pipeline only supports models of nerves with constant cross-sectional area, meaning only one
Slide is used per FEM, but this class is implemented for future expansion of the pipeline to construct three-dimensional
nerve models with varying cross section (e.g., using serial histological sections). If only one slide is provided, Map is
generated automatically, and the user should have little need to interact with this class.

15.4. Slide 89

ASCENT, Release v1.1.2

15.6 Sample

The Sample class is initialized within Runner’s run() method by loading Sample and Run configurations (S7 and
S8 Text). First, Sample’s build_file_structure() method creates directories in samples/ and populates them
with the user’s file inputs from input/<NAME>/; the images are copied over for subsequent processing, as well as
for convenience in creating summary figures. Sample then uses its populate() method to construct instances of
Nerve and Fascicle in memory from the input sample morphology binary images (see Fascicle class above for details).
Sample’s populate() method packages instances of Nerve and Fascicle(s) into an instance of Slide.

Sample’s get_factor() method obtains the ratio of microns/pixel for the input masks, either utilizing a scale bar
image, or an explicit scale factor input depending on the user’s ScaleInputMode defined in Sample (S8 Text).

Sample’s scale() method is used to convert Trace points from pixel coordinates to coordinates with units of distance
based either on the length of the horizontal scale bar as defined in Sample (micrometers) and the width of the scale
bar (pixels) in the input binary image (s.tif), or on the explicitly specified scale ratio defined in Sample (S8 Text).
If using a scale bar for scale input, it must be a perfectly horizontal line. Sample’s scale() method is also used within
populate() to correct for shrinkage that may have occurred during the histological tissue processing. The percentage
increase for shrinkage correction in the slide’s 2D geometry is stored as a parameter “shrinkage” in Sample (S8 Text).
Additionally, Slide has a move_center() method which is used to center Slide about a point within populate().
Note that Sample is centered with the centroid of the best-fit ellipse of the outermost Trace (Nerve if “NerveMode”
in Sample (“nerve”) is “PRESENT”, outer Trace if “NerveMode” is “NOT_PRESENT”, (S8 Text)) at the origin (0,0,0).
Change in rotational or translational placement of the cuff around the nerve is accomplished by moving the cuff and
keeping the nerve position fixed (S19 Text).

Sample’s im_preprocess() method performs preprocessing operations on the binary input masks based on the pa-
rameters given under preprocess in Sample (S8 Text).

Sample’s io_from_compiled() generates outers (o.tif) and inners (i.tif) from the (compiled) c.tif mask if
"MaskInputMode" is INNER_AND_OUTER_COMPILED. These generated masks are then used in Fascicle’s to_list()
method.

Sample’s generate_perineurium() method is used to generate the perineurium for fascicle inners in the case where
"MaskInputMode" = INNERS. This leverages Trace’s offset() method, and fits the generated perineurium based on
ci_perineurium_thickness defined in Sample (S8 Text).

Sample’s populate() method also manages operations for saving tissue boundaries of the Sample (Nerve and Fasci-
cles) to CAD files (slides/#/#/sectionwise2d/) for input to COMSOL with Sample’s write() method.

Sample’s output_morphology_data()method collects sample morphology information (area, and the best-fit ellipse
information: centroid, major axis, minor axis, and rotation) for each original Trace (i.e., Fascicle inners and outers, and
Nerve) and saves the data under “Morphology” in Sample.

Lastly, since Sample inherits Saveable, Sample has access to the save() method which saves the Python object to
file.

15.7 Deformable

If “DeformationMode” in Sample (“deform”) is set to NONE, then the Deformable class takes no action (S8 Text).
However, if “DeformationMode” in Sample is set to PHYSICS, then Deformable’s deform() method simulates the
change in nerve cross section that occurs when a nerve is placed in a cuff electrode. Specifically, the outer boundary of
a Slide’s Nerve mask is transformed into a user-defined final geometry based on the “ReshapeNerveMode” in Sample
(i.e., CIRCLE) while maintaining the cross-sectional area. Meanwhile, the fascicles (i.e., outers) are repositioned within
the new nerve cross section in a physics-based way using Pymunk [5], a 2D physics library, in which each fascicle is
treated as rigid body with no elasticity as it is slowly “pushed” into place by both surrounding fascicles and the nerve
boundary (Figure A).

90 Chapter 15. Python classes for representing nerve morphology (Sample)

ASCENT, Release v1.1.2

Figure A. Snapshots at 0%, 50%, and 100% (left-to-right) of the deformation process powered by the pygame package
[6]. The deformation process is shown for two minimum fascicle separation constraints: 10 µm (top row) and 20 µm
(bottom row). The geometry at 0% deformation is shown after the fascicles have been spread out to the minimum
separation constraint.

The deform() method updates the nerve boundary to intermediately-deformed nerve traces between the nerve’s
“boundary_start” (i.e., the Trace’s profile in segmented image) and “boundary_end” (i.e., the Trace’s profile after
accommodation to the cuff’s inner diameter, which is determined by the “ReshapeNerveMode” (“reshape_nerve”,
S8 Text) while the fascicle contents are allowed to rearrange in a physics-space. By default, all fascicles have the same
“mass”, but their moment of inertia is calculated for each fascicle based on its geometry (see Trace’s pymunk_poly()
method). Each fascicle is also assigned a “friction coefficient” of 0.5 as well as a “density” of 0.01. These measure-
ments are mostly important as they relate to one another, not as absolute values. Importantly, we set the elasticity of
all the fascicles to 0, so all kinetic energy is absorbed, and fascicles only move if they are directly pushed by another
fascicle or by the nerve barrier. In Sample’s populate() method, the final fascicle locations and rotations returned by
the deform() method are then applied to each fascicle using the Fascicle class’s shift() and rotate() methods.

Deformable’s convenience constructor, from_slide(), is automatically called in Sample’s populate() method,
where a Slide is deformed to user specification. The from_slide() method takes three input arguments: The Slide
object from which to construct the current Deformable object, the “ReshapeNerveMode” (e.g., CIRCLE, S8 Text),
and the minimum distance between fascicles. If only inners are provided, virtual outers interact during nerve de-
formation to account for the thickness of the perineurium. Each inner’s perineurium thickness is defined by the
“PerineuriumThicknessMode” in Sample (“ci_perineurium_thickness”, S8 Text), which specifies the linear
relationship between inner diameter and perineurium thickness defined in config/system/ci_peri_thickness.
json (S8 Text). Deformable’s from_slide() method uses Deformable’s deform_steps() method to calculate
the intermediately-deformed nerve traces between the boundary_start and the boundary_end, which contain the
same number of points and maintain nerve cross-sectional area. The deform_steps() method maps points between
boundary_start and boundary_end in the following manner. Starting from the two points where the major axis
of the Nerve’s best-fit ellipse intersects boundary_start and boundary_end, the algorithm matches consecutive
boundary_start and boundary_end points and calculates the vectors between all point pairs. The deform_steps()
method then returns a list of intermediately-deformed nerve traces between the boundary_start and boundary_end
by adding linearly-spaced portions of each point pair’s vector to boundary_start. Also note that by defining
“deform_ratio” (value between 0 and 1) in Sample, the user can optionally indicate a partial deformation of the
Nerve (S8 Text). In the case where "deform_ratio" is set to 0, minimum fascicle separation will still be enforced,

15.7. Deformable 91

ASCENT, Release v1.1.2

but no changes to the nerve boundary will occur.

Enforcing a minimum fascicle separation that is extremely large (e.g., 20 µm) can cause inaccurate deformation, as
fascicles may be unable to satisfy both minimum separation constraints and nerve boundary constraints.

To maintain a minimum distance between adjacent fascicles, the Deformable’s deform() method uses Trace’s
offset() method to perform a non-affine scaling out of the fascicle boundaries by a fixed distance before defin-
ing the fascicles as rigid bodies in the pygame physics space. At regular intervals in physics simulation time, the nerve
boundary is updated to the next Trace in the list of intermediately-deformed nerve traces created by deform_steps().
This number of Trace steps defaults to 36 but can be optionally set in Sample with the “morph_count” parameter by
the user (S8 Text). It is important to note that too few Trace steps can result in fascicles lying outside of the nerve during
deformation, while too many Trace steps can be unnecessarily time intensive. We’ve set the default to 36 because it
tends to minimize both aforementioned issues for all sample sizes and types that we have tested.

The user may also visualize nerve deformation by setting the “deform_animate” argument to true in sample.
populate() (called in Runner’s run() method) (S8 Text). Visualizing sample deformation can be helpful for de-
bugging but increases computational load and slows down the deformation process significantly. When performing
deformation on many slides, we advise setting this flag to false.

15.8 References

1. Boyd IA, Kalu KU. Scaling factor relating conduction velocity and diameter for myelinated afferent nerve fibres
in the cat hind limb. J Physiol. 1979 Apr;289:277–97. Available from: https://doi.org/10.1113/jphysiol.1979.
sp012737

2. Bradski G, Daebler A. Learning OpenCV. Computer vision with OpenCV library. 2008 Jan 1;222–64.

3. Johnson A, Chalton M, Treyer L, Ratajc G. pyclipper · PyPI [Internet]. 2019 [cited 2020 Apr 20]. Available
from: https://pypi.org/project/pyclipper/

4. Gillies S. Shapely · PyPI [Internet]. 2019 [cited 2020 Apr 20]. Available from: https://pypi.org/project/Shapely/

5. Blomqvist V. pymunk · PyPI [Internet]. 2019 [cited 2020 Apr 20]. Available from: https://pypi.org/project/
pymunk/

6. Shinners P. Pygame Intro — pygame v2.0.0.dev5 documentation [Internet]. [cited 2020 Apr 20]. Available from:
https://www.pygame.org/docs/tut/PygameIntro.html

92 Chapter 15. Python classes for representing nerve morphology (Sample)

https://doi.org/10.1113/jphysiol.1979.sp012737
https://doi.org/10.1113/jphysiol.1979.sp012737
https://pypi.org/project/pyclipper/
https://pypi.org/project/Shapely/
https://pypi.org/project/pymunk/
https://pypi.org/project/pymunk/
https://www.pygame.org/docs/tut/PygameIntro.html

CHAPTER

SIXTEEN

CREATING SAMPLE SPECIFIC NERVE MORPHOLOGIES IN COMSOL

16.1 ModelWrapper.addNerve()

The addNerve() method adds the nerve components to the COMSOL “model” object using Java. If the
“NerveMode” in Sample (“nerve”) is “PRESENT” (S8 Text) the program creates a part instance of epineurium
using the createNervePartInstance() method in Part (src/model/Part.java). The addNerve() method
then searches through all directories in fascicles/ for the sample being modeled, and, for each fascicle, as-
signs a path for the inner(s) and outer in a HashMap. The HashMap of fascicle directories is then passed to the
createNervePartInstance() method in Part which adds fascicles to the COMSOL “model” object.

16.1.1 Part.createNervePartInstance()

The createNervePartInstance() method in Part (src/model/Part.java) creates three-dimensional
representations of the nerve sample including its endoneurium, perineurium, and epineurium. The
createNervePartInstance() method defines domain and surface geometries and contributes them to COM-
SOL selections (lists of indices for domains, surfaces, boundaries, or points), which are necessary to later assign
physics properties.

Fascicles

ASCENT uses CAD sectionwise files (i.e., ASCII with .txt extension containing column vectors for x- and y-
coordinates) created by the Python Sample class to define fascicle tissue boundaries in COMSOL.

We provide the “use_ci” mode in Model (S8 Text) to model the perineurium using COMSOL’s contact impedance
boundary condition for fascicles with only one inner (i.e., endoneurium) domain for each outer (i.e., perineurium)
domain (S28 Text). If “use_ci” mode is true, the perineurium for all fascicles with exactly one inner and one outer is
represented with a contact impedance. The pipeline does not support control of using the contact impedance boundary
condition on a fascicle-by-fascicle basis.

The createNervePartInstance()method in Part (src/model/Part.java) performs a directory dive on the output
CAD files samples/<sample_index>/slides/<#>/<#>/sectionwise2d/fascicles/<outer,inners>/ from
the Sample class in Python to create a fascicle for each outer. Depending on the number of corresponding inners for
each outer saved in the file structure and the “use_ci” mode in Model, the program either represents the perineurium
in COMSOL as a surface with contact impedance (FascicleCI: Fascicles with one inner per outer and if “use_ci”
mode is true) or with a three-dimensional meshed domain (FascicleMesh: Fascicles with multiple inners per outer or
if “use_ci” parameter is false).

93

https://www.comsol.com/fileformats

ASCENT, Release v1.1.2

Epineurium

The createNervePartInstance() method in Part (src/model/Part.java) contains the operations required to
represent epineurium in COMSOL. The epineurium cross section is represented one of two ways:

• If deform_ratio in Sample is set to 1 and "DeformationMode" is not "NONE", the nerve shape matches the
"ReshapeNerveMode" from Sample (e.g., "CIRCLE"). (S8 Text). An epineurium boundary is then created from
this shape.

• Otherwise, the coordinate data contained in samples/<sample_index>/slides/<#>/<#>/
sectionwise2d/nerve/0/0.txt is used to create a epineurium boundary.

The epineurium boundary is then extruded into the third dimension. This is only performed if the “NerveMode” (i.e.,
“nerve”) in Sample is “PRESENT” and n.tif is provided (S8 Text).

94 Chapter 16. Creating sample specific nerve morphologies in COMSOL

CHAPTER

SEVENTEEN

MICRO LEADS CUFF MEASUREMENTS

We collected and measured images of 200, 300, and 400 µm Micro-Leads Neuro cuffs (Somerville, MA) (Figure A
and Table A).

Figure A. Micro-Leads cuff measurements taken for 200, 300, and 400 µm inner diameter cuffs. Inner diameter (ID)
displacement is defined from the center of the circle of the outer diameter (OD) to the center of the semi-circle for the
inner diameter.

Table A. Cuff measurements (units: micrometer) for 200, 300, and 400 µm inner diameter Micro-Leads cuffs.

We also collected and measured images of 100 µm Micro-Leads cuffs, which had a different cross section from the
larger diameter cuffs and are therefore reported separately (Figure B and Table B).

95

ASCENT, Release v1.1.2

Figure B. Micro-Leads cuff measurements taken for 100 µm inner diameter cuffs. Inner diameter (ID) displacement is
defined from the center of the circle of the outer diameter (OD) to the center of the semi-circle for the inner diameter.

Table B. Cuff measurements (units: micrometer) for 100 µm inner diameter Micro-Leads cuffs.

For all “preset” cuff JSON files based on our Micro-Leads cuff measurements, we recessed the contacts by 50 µm.
Though we were not able to directly measure the recess depth of the contacts, Micro-Leads informed us that the surface
of the electrode metal could never be recessed by more than ~60-70 µm.

96 Chapter 17. Micro Leads cuff measurements

CHAPTER

EIGHTEEN

LIBRARY OF PART PRIMITIVES FOR ELECTRODE CONTACTS AND
CUFFS

97

ASCENT, Release v1.1.2

Figure A. Library of parts for electrode contacts. In the top two panels, “circle material” and “rectangle material”
indicate that the contact’s dimensions refer to the length of the materials, rather than the dimension of the contact when
it is bent to wrap around the circular inner diameter of the cuff. The dimensions “_thk” refer to the contact thickness.
The dimensions “_recess” refer to the thickness of the domain created if the contact is recessed into the cuff.

Figure B. Library of parts for cuffs. Parameters “U(t)_shift_x” and “U(t)_shift_y” change how the insulating material
is centered around the inner diameter of the cuff as shown by the orange annotation.

98 Chapter 18. Library of part primitives for electrode contacts and cuffs

CHAPTER

NINETEEN

CREATING CUSTOM PRESET CUFFS FROM INSTANCES OF PART
PRIMITIVES

The operations by which cuffs are added to the COMSOL “model” object are contained in the Java Part class (src/
model/Part.java). A complete cuff design is defined by a JSON file (e.g., Purdue.json) stored in config/
system/cuffs/, which we call a “preset” cuff, containing parameterizations and material assignments for part prim-
itives that together represent an entire cuff electrode, including contact “recess” and “fill” (i.e., saline, mineral oil, or
encapsulation tissue). The contents of the “preset” JSON file direct the Part class on which part primitives to add as well
as their size, shape, placement, and material function (i.e., cuff “insulator”, contact “conductor”, contact “recess”, and
cuff “fill”). Fig 3A shows some examples of “preset” cuffs constructed from our library of COMSOL part primitives
which are included in the pipeline repository in config/system/cuffs/. Users should not modify existing “preset”
cuff files. Rather, a user should use our “preset” cuffs as a guide in constructing their own custom cuffs, which require
a unique file name. Once a cuff is defined as a “preset” in config/system/cuffs/ as its own JSON file, the user may
choose to place the cuff on a nerve in COMSOL using the “preset” parameter in Model (S8 Text).

We provide a COMSOL file in examples/parts/sandbox.mph that contains our library of “Geometry Parts” (i.e.,
part primitives) for users to assemble into their own cuffs in the COMSOL GUI. See S18 Text for instructions on how
to add new part primitives. After a part primitive is defined in the “Geometry Parts” node in the COMSOL GUI,
under “Component 1”, the user may secondary-click on the “Geometry 1” node -> “Parts” and select a part primitive.
Importantly, the order of instantiated parts in the “Geometry 1” node matters for proper material assignment; the user
must consider that when a new part occupies volume within a previously instantiated part, COMSOL will override the
previous material assignment for the shared volume with the latter created part’s material assignment. For example, if
a user is modeling a cuff containing an embedded contact electrode (i.e., the contact surface is flush with the insulator’s
inner surface) and the entire cuff is bathed in saline (i.e., surgical pocket), the user would (1) add the part primitive
for the saline cuff “fill” since it is the outer-most domain, (2) add the cuff “insulator” which would override its volume
within the saline, and (3) add the contact “conductor” which would override the cuff insulator domain within the contact
conductor. The order of instantiation of part primitives in COMSOL mirrors the order of the parts listed in the “preset”
JSON file.

The part’s required instantiation “Input Parameters” (in the “Settings” tab) have default values (found in the “Expres-
sion” dialogue boxes) that should be overridden and populated using parameter values to define the geometry of the
part in your preset’s implementation. The “Expression” dialogue boxes must contain parameter values already defined
in a “Parameter Group” under the “Global Definitions” node (i.e., parameter names for either constants with units (e.g.,
“5 [um]”) or mathematical relationships between other parameters (e.g., “parameter1 + parameter2”)). The parameter
values in the “Parameter Group” under the “Global Definitions” node are populated with the list of “params” in the
“preset” cuff JSON file (explained in more detail below).

Once the user has succeeded in assembling their cuff in the COMSOL GUI from parameterized instantiations of parts in
examples/parts/sandbox.mph, they are ready to create a new “preset” cuff JSON file in config/system/cuffs/.
See the existing files in that directory for examples. The required elements of a “preset” cuff JSON file are shown in
the skeleton structure below:

99

https://doi.org/10.1371/journal.pcbi.1009285.g003

ASCENT, Release v1.1.2

{
"code": String
"instances": [
{
"type": String,
"label": Double,
"def": {

"parameter1": String // key is name of expected parameter in COMSOL
... // for all parameters (specific for part primitive “type”)

},
"materials": [

{
"info": String,
"label_index": Integer

}
... // for all materials in a part

]
}
... // for all instances
]
"params": [

{
"name": String, // e.g., “parameter1_<code_value>” ... such as “pitch_Pitt”
"expression": String,
"description": String

}
... // for all parameters

]
},
"expandable": Boolean,
"fixed_point": String,
"angle_to_contacts_deg": Double,
"offset": {

"parameter1": Double,
// parameter must be defined in “params” list, value is weight of

parameter value
// (e.g., if radius of wire contact, need 2 to get contributing radial

distance
// between nerve and cuff)
... // for all parameters informing how much “extra” space needed in cuff

}
}

“code”: The value (String) is a unique identifier for the parameters that are needed to define this cuff. All parameters
in the “params” [Object, ...] will need to end with the characters of this code preceded by “_” (e.g., “code” =
“Pitt”, the “pitch” parameter for the separation between contacts would be “pitch_Pitt”).

“instances”: The value is a list of JSON Objects, one for each part instance needed to represent the cuff. Within each
part instance JSON Object, the user must define:

• “type”: The value (String) defines which known primitive to instantiate, which matches the switch-case
in BOTH Part.createCuffPartPrimitive() AND Part.createCuffPartInstance() in Java (src/
model/Part.java) behind the scenes.

• “label”: The value (String) defines the label that will show up in the COMSOL file to annotate the instance of

100 Chapter 19. Creating custom preset cuffs from instances of part primitives

ASCENT, Release v1.1.2

the part primitive in the construction of your COMSOL FEM.

• “def”: The value (Object) contains all parameters required to instantiate the chosen part primitive. The key-
value pairs will match the values entered in the COMSOL GUI for a part (i.e., “Settings” -> “Input Parameters”
panel) in examples/parts/sandbox.mph.

– Key-value pairs in this JSON Object will vary depending on the part primitive as defined in “type”. For
each parameter key, the value is a String containing a mathematical expression (of parameters) for COM-
SOL to evaluate.

• “materials”: List of JSON Objects for each material assignment in a part instance (usually this is just one ma-
terial; contacts with recessed domains will have one material for the conductor and one material for the recessed
domain as the part instance will create two separate domains with independent selections)

– “info”: The value (String) is the function of the domain in the FEM (i.e., “medium”, cuff “fill”, cuff “in-
sulator”, contact “conductor”, and contact “recess”) that is used to assign material properties to a selected
domain. The value will match a key in the “conductivities” JSON Object in Model.

– “label_index”: The value (Integer) corresponds to the index of the selection for the domain (in im.
labels, defined independently for each primitive case in Part.createCuffPartPrimitive() – see
code in src/model/Part.java) to be assigned to the material function. Note that im.labels are in-
dexed starting at 0.

“params”: The value is a list of JSON Objects, one for each parameter used to define parameterizations of part
primitives in COMSOL’s Global Definitions. The structure of each JSON Object is consistent with the format of
the dialogue boxes in each “Parameters” group (i.e., “Name”, “Expression”, “Description”) where the parameters are
populated in the COMSOL GUI:

• “name”: The value (String) is the name of the parameter.

• “expression”: The value (String) is the expression/constant with units that COMSOL will evaluate. Therefore,
if the value is a constant, units wrapped in “[]” are required (e.g., “5 [um]”). If the value is an expression relating
other parameters (that already are dimensioned with units) with known mathematical expressions (e.g., multiply
“*”, divide “/”, add “+”, subtract “-”, exponent “^”, trigonometric formulas: “sin()”, “cos()”, “tan()”,
“asin()”, “acos()”, “atan()”), do not add units after the expression.

• “description”: The value (String) can be empty (i.e., “”) or may contain a description of the parameter such
as a reference to the source (e.g., published patent/schematics) or a note to your future self.

“expandable”: The value (Boolean) tells the system whether to expect the implementation of the cuff in COMSOL
to be able to expand beyond the manufactured resting cuff diameter to fit around a nerve. For a cuff to be expandable, it
must be constructed from part primitives that have been parameterized to expand as a function of “R_in”. See config/
system/cuffs/Purdue.json for an example of an expandable cuff. Expandable cuffs should be parameterized such
that the contact length remains constant.

"fixed_point": The value (String) defines which point on the cuff remains fixed when expanding. Note that these
are not behaviors, this option will change nothing regarding how the cuff is generated. This parameter is descriptive
only, indicating how the cuff is parameterized based on the part primitives. This parameter is to inform the cuff shift
algorithm on how it should account for cuff expansion. Currently two options are implemented:

1. "center": In this case, the center of the contact always remains at the same angle when expanding.

2. "clockwise_end": In this case, the clockwise end of either the cuff, or the contact (both will work correctly)
remains fixed. Note, this option assumes that the fixed point for the clockwise end is at theta = 0.

“angle_to_contacts_deg”: The value (Double, units: degrees) defines the angle to the contact point of the nerve
on the inside of the cuff of the cuff (measured counterclockwise from the +x-axis before any rotation/deformation of
the cuff).

“offset”: The JSON Object contains keys that are names of parameters defined in the list of “params” in this “preset”
cuff file. If the inner diameter of the cuff must expand to allow for additional distance between the nerve and “R_in” (the

101

ASCENT, Release v1.1.2

inner surface of the cuff insulator), the user adds key-value pairs for the offset buffer here. For each known parameter
key, the user sets the value (Double) to be the multiplicative factor for the parameter key. The list of key-value pairs
can be empty, as is the case for most cuffs. Once offset is added to a cuff, the values are automatically used in Runner’s
compute_cuff_shift() method.

For example usage of this functionality, see config/system/cuffs/Purdue.json as replicated below:

"offset": {
"sep_wire_P”: 1, // sep_wire_P is the separation between the wire contact and the

// inner diameter of the cuff
“r_wire_P”: 2 // r_wire_P is the radius of the circular cross section of the

// wire contact (i.e., half of the wire’s gauge)
}

// the above JSON Object adds an offset buffer between the nerve and the inner
// diameter of the cuff of : (1*sep_wire_P) + (2*r_wire_P)

102 Chapter 19. Creating custom preset cuffs from instances of part primitives

CHAPTER

TWENTY

CREATING NEW PART PRIMITIVES

Though we provide a library of part primitives to assemble representations of many cuff electrodes as shown in
examples/parts/sandbox.mph, users may find it necessary to add their own part primitives for representing their
custom cuff electrode designs. Use the following instructions as a guide and link to resources for creating a new part
primitive.

The COMSOL GUI has a “Geometry Parts” node under the “Global Definitions”. The pipeline adds part primi-
tives—i.e., the geometry of different pieces of cuff electrodes (e.g., contacts (S16 Text Figure A), insulators (S16 Text
Figure B)), cuff fill (e.g., encapsulation tissue, mineral oil, saline), or medium (e.g., surrounding muscle, fat)—as
“parts” under “Geometry Parts”. Their resulting volumes (domains), surfaces, and points (used for point current
sources) are added to the list of “cumulative selections” which are later used to assign appropriate mesh settings,
material properties, and boundary conditions.

1. Create and label your part. Open up examples/parts/sandbox.mph, secondary-click on “Geometry Parts”,
choose “3D Part”. Give your part an appropriate label as it will later be used in creating “preset” cuff JSON files and
as a flag for the primitive in our Java Part class (src/model/Part.java).

2. Define your part’s geometry. Secondary-click on the new part under “Geometry Parts” to add the geometry opera-
tions required to construct your cuff (e.g., “Block”, “Cone”, “Cylinder”, “Sphere”, “More Primitives”, “Work Plane”).
See the operations under the other part primitives in sandbox.mph as a guide in creating your geometry, as well as
COMSOL’s documentation (in particular their “Appendix A – Building a Geometry”) and “Introductory Video Series
on How to Build Geometries in COMSOL”. In creating your geometry, carefully label each operation to improve read-
ability of your geometry operations. Taking care to label the operations will not only help to communicate to other
users and your future self what operations must occur, but also will help you in cleaning up your Java code in the Part
class (part of step 6). The dimensions and locations of part geometries should refer to “Input Parameters” or parameters
stored in a parameters group under “Global Definitions”.

3. Assign each feature of interest (i.e., volumes/domains, surfaces, points) to a “Cumulative selection”. The final form
of domains that you will want to assign to a material property need to be assigned to a “Cumulative selection”, which
can be found for the final geometry operation under the “Settings” tab. In “Settings”, under the “Contribute to” drop
down menu within the “Selections of Resulting Entities” section, the first time you refer to a cumulative selection you
will need to click the “New” button and type in the name of the selection. Again, take care to give an informative
label. Our convention, though not required, is to make the cumulative selection names in all capitals to improve code
readability.

4. Compact sandbox.mph file history. File -> Compact History removes any operations you may have tested but did
not ultimately use to create your part.

5. Export Java code. Go to File -> Save As, give a meaningful path/file name, and change the file type to “Model File
for Java (*.java)”.

6. Add the operations for your part primitive to the Part.createCuffPartPrimitive() method in Java (src/
model/Part.java). With the text editor of your choice, open the newly created *.java file. Toward the bottom of
the file, the operations you just performed in COMSOL are contained in a block of code. Performing a “Command+F”

103

https://cdn.comsol.com/doc/5.5/IntroductionToCOMSOLMultiphysics.pdf
https://www.comsol.com/video/introductory-video-series-on-how-to-build-geometries-in-comsol
https://www.comsol.com/video/introductory-video-series-on-how-to-build-geometries-in-comsol

ASCENT, Release v1.1.2

(on Mac) or “Control+F” (on Windows) for your new part primitive’s name that you gave in the GUI (from step 1)
should take you to the first line of the code block of interest, which looks like:

“model.geom(“part<#>”).label(<your part’s name>);

All subsequent lines starting with “model.geom(“part<#>”)” are of interest. Copy them to your clipboard. With
Part.createEnvironmentPartPrimitive() as a guide (since it is by far the simplest and most contained “prim-
itive” – in reality it is just a cylinder contributed to the “MEDIUM” cumulative selection), add your lines to Part.
createCuffPartPrimitive().

• Add a “case” in the switch-case (e.g., case “TubeCuff_Primitive”). Within this case-block, all operations for
the new primitive will be added.

• For each line in your code (copied from the exported *.java file) that begin with “model.geom.(“part<#>”).
inputParam().set(“<my_parameter>”, “<default_value>”), at the top of your new case-block, add the
following line to set the “Input Parameters” you established in the COMSOL GUI:

– mp.set(“<my_parameter>”, “<default_value>”)

• Still looking at Part.createEnvironmentPartPrimitive() as an example, now create your list of “selec-
tions” in “im.labels” which are the lines that follow after the “Input Parameters” are defined. Then add the for
loop that loops over the im.labels [String, ...] adding them to COMSOL’s selections. These lines will
look like:

im.labels = new String[] {
“<MY_CUMULATIVE SELECTION_1>”, // note: This is index 0
“<MY_CUMULATIVE SELECTION_2>”, // note: This is index 1
...
}

for (String cselLabel : im.labels) {
model.geom(id).selection().create(im.next(“csel”, cselLabel),
“CumulativeSelection”).label(cselLabel)
}

• The lines that follow the Cumulative Selection labeling add the geometry features of the COMSOL part which
COMSOL has also conveniently exported for you in the *.java file. See S26 Text for an explanation of our
Java IdentifierManager utility class that we created to abstract away from COMSOL’s indexing system to
improve code readability. Our “IdentifierManager” class enables the user to access previously defined selec-
tion tags by an informative label programmatically. Part.createEnvironmentPartPrimitive() and Part.
createCuffPartPrimitive() are also great working examples of how we use the COMSOL plugin in an IDE
to clean up the code (e.g., creating a COMSOL “GeomFeature” to shorten the length of each line).

• End the case for your new part primitive with a “break;” (this is very important!)

7. Add the operations for your part primitive to the Part.createCuffPartInstance() method (src/model/Part.
java).

• Create a List[String] containing the “Input Parameters” you established in the COMSOL GUI. These lines
will look like:

String[] myPrimitiveParameters = {
“<my_parameter1>”,
“<my_parameter2>”,
... // for all Input Parameters
}

• Add a for loop that adds all the “Input Parameters” to the part instance. These lines will look like:

104 Chapter 20. Creating new part primitives

ASCENT, Release v1.1.2

for (String param : myPrimitiveParameters) {
partInstance.setEntry(“inputexpr”, param, (String) itemObject.get(param));
}

• Our primitives have an additional (optional) section for selection imports. Each defined selection used in your
geometry operations will be visible in the “Contribute to” drop-down menu unless you toggle each selection
“off”. An example of how to “clean up” your selections imported is shown below:

// imports

// so that the program only imports selections that are used partInstance.set(“selkeepnoncontr”, false);

// to selectively import the DOMAIN for whatever selection index 0 is in myLabels (defined in im.labels in //
createCuffPartPrimitive()). To exclude, “off” instead of “on”. partInstance.setEntry(“selkeepdom”,
instanceID + “_” + myIM.get(myLabels[0] + “.dom”, “on”));

// to selectively import the BOUNDARY for whatever selection index 0 is in myLabels (defined in im.labels // in
createCuffPartPrimitive()). To exclude, “off” instead of “on”. partInstance.setEntry(“selkeepbnd”,
instanceID + “_” + myIM.get(myLabels[0] + “.bnd”, “on”));

// to selectively import the POINT for whatever selection index 0 is in myLabels (defined in im.labels // in
createCuffPartPrimitive()). To exclude, “off” instead of “on”. partInstance.setEntry(“selkeeppnt”,
instanceID + “_” + myIM.get(myLabels[0] + “.pnt”, “on”));

• End the case for your new part instance with a “break;” (this is very important!)

8. (Step is optional but recommended). Add your new part to examples/parts/sandbox.mph. Simply save your
sandbox.mph file as a *.mph, if you have not already, for future ability to assemble cuffs using your new part in the
COMSOL GUI.

105

ASCENT, Release v1.1.2

106 Chapter 20. Creating new part primitives

CHAPTER

TWENTYONE

CUFF PLACEMENT ON NERVE

This section provides an overview of how the cuff is placed on the nerve. The compute_cuff_shift() method
within Runner (src/runner.py) determines the cuff’s rotation around the nerve and translation in the (x,y)-plane. The
pipeline imports the coordinates of the traces for the nerve tissue boundaries saved in samples/<sample_index>/
slides/0/0/sectionwise2d/ which are, by convention, shifted such that the centroid of the nerve is at the origin
(0,0) (i.e., nerve centroid from best-fit ellipse if nerve trace (n.tif) is provided, inner or outer best-fit ellipse centroid
for monofascicular nerves without nerve trace). Importantly, the nerve sample cross section is never moved from or
rotated around the origin in COMSOL. By maintaining consistent nerve location across all Model’s for a Sample, the
coordinates in fibersets/ are correct for any orientation of a cuff on the nerve.

ASCENT has different CuffShiftModes (i.e., “cuff_shift” parameter in Model) that control the translation of the
cuff (i.e., “shift” JSON Object in Model) and default rotation around the nerve (i.e., “pos_ang” in Model). Runner’s
compute_cuff_shift() method is easily expandable for users to add their own CuffShiftModes to control cuff
placement on the nerve.

The rotation and translation of the cuff are populated automatically by the compute_cuff_shift() method based
on sample morphology, parameterization of the “preset” cuff, and the CuffShiftMode, and are defined in the “cuff”
JSON Object (“shift” and “rotate”) in Model.

For “naïve” CuffShiftModes (i.e., “NAIVE_ROTATION_MIN_CIRCLE_BOUNDARY”,
“NAIVE_ROTATION_TRACE_BOUNDARY”) the cuff is placed on the nerve with rotation according to the parame-
ters used to instantiate the cuff from part primitives (S16, S17, and S18 Text). If the user would like to rotate the cuff
from beyond this position, they may set the “add_ang” parameter in Model (S8 Text). For naïve CuffShiftModes,
the cuff is shifted along the vector from (0,0) in the direction of the “angle_to_contacts_deg” parameter in
the “preset” JSON file. “NAIVE_ROTATION_MIN_CIRCLE_BOUNDARY” CuffShiftMode moves the cuff toward the
nerve until the nerve’s minimum radius enclosing circle is within the distance of the “thk_medium_gap_internal”
parameter for the cuff. “NAIVE_ROTATION_TRACE_BOUNDARY” CuffShiftMode moves the cuff toward the
nerve until the nerve’s outermost Trace (i.e., for monofascicular nerve an inner or outer, and same result
as “NAIVE_ROTATION_MIN_CIRCLE_BOUNDARY” for nerve’s with epineurium) is within the distance of the
“thk_medium_gap_internal” parameter for the cuff. Note: orientation masks (a.tif) are ignored when using
these modes.

For “automatic” CuffShiftModes (i.e., “AUTO_ROTATION_MIN_CIRCLE_BOUNDARY”,
“AUTO_ROTATION_TRACE_BOUNDARY”) the cuff is rotated around the nerve based on the size and position of
the nerve’s fascicle(s) before the cuff is moved toward the nerve sample (Figure A). The point at the intersection
of the vector from (0,0) in the direction of the “angle_to_contacts_deg” parameter in the “preset” JSON file
with the cuff (i.e., cuff’s “center” in following text) is rotated to meet a specific location of the nerve/monofascicle’s
surface. Specifically, the center of the cuff is rotated around the nerve to make (0,0), the center of the cuff, and
Sample’s “fascicle_centroid” (computed with Slide’s fascicle_centroid() method, which calculates the
area and centroid of each inner and then averages the inners’ centroids weighted by each inner’s area) colinear. If the
user would like to rotate the cuff from beyond this position, they may set the “add_ang” parameter in Model (S8
Text). The user may override the default “AUTO” rotation of the cuff on the nerve by adding an orientation mask
(a.tif) to align a certain surface of the nerve sample with the cuff’s center (S11 Text). This behavior depends on
the cuff’s "fixed_point" parameter (S17 text) The “AUTO_ROTATION_MIN_CIRCLE_BOUNDARY” CuffShiftMode

107

ASCENT, Release v1.1.2

moves the cuff toward the nerve until the nerve’s minimum radius enclosing circle is within the distance of the
“thk_medium_gap_internal” parameter for the cuff. “AUTO_ROTATION_TRACE_BOUNDARY” CuffShiftMode
moves the cuff toward the nerve until the nerve’s outermost Trace (i.e., for monofascicular nerve an inner or outer, and
same result as “AUTO_ROTATION_MIN_CIRCLE_BOUNDARY” for nerve’s with epineurium) is within the distance of the
“thk_medium_gap_internal” parameter for the cuff.

Figure A. Demonstration of cuff placement on a multifascicular nerve (top) and a monofascicular nerve with-
out epineurium (bottom) with the same “preset” cuff (Purdue.json) for three different cuff rotations using the
“AUTO_ROTATION_TRACE_BOUNDARY” CuffShiftMode. The cuff rotations are different in the top and bottom
rows since the point on the surface of the nerve sample closest to the most endoneurium is unique to each sample (black
arrows). Additional angles of rotation were applied to the cuff directly using the “add_ang” parameter in the Model’s
“cuff” JSON Object (red arrows).

The default z-position of each part along the nerve is defined in the “preset” cuff JSON file by the expression assigned
to the part instance’s “Center” parameter (referenced to z = 0 at one end of the model’s proximal cylindrical domain).
However, if the user would like to move the entire “preset” cuff along the length of the nerve, in the “cuff” JSON Object
within Model, the user may change the “z” parameter.

Since some cuffs can open in response to a nerve diameter larger than the manufactured cuff’s inner diameter, they
maybe be parameterized as a function of “R_in”. In this case, in the “preset” cuff JSON, the “expandable” Boolean
parameter is true. If the cuff is “expandable” and the minimum enclosing diameter of the sample is larger than the
cuff, the program will modify the angle for the center of the cuff to preserve the length of materials. If the cuff is not
expandable and the sum of the minimum enclosing circle radius of the sample and “thk_medium_gap_internal”
are larger than the inner radius of the cuff, an error is thrown as the cuff cannot accommodate the sample morphology.

The inner radius of the cuff is defined within the list of “params” in each “preset” cuff configuration file as “R_in”,
and a JSON Object called “offset” contains a parameterized definition of any additional buffer required within the
inner radius of the cuff (e.g., exposed wire contacts as in the Purdue.json cuff “preset”). Each key in the “offset”
JSON Object must match a parameter value defined in the “params” list of the cuff configuration file. For each key in
“offset”, the value is the multiplicative coefficient for the parameter key to include in a sum of all key-value products.
For example, in Purdue.json:

"offset": {
"sep_wire_P": 1, // separation between outer boundary of wire contact and internal

// surface of insulator
"r_wire_P": 2 // radius of the wire contact’s gauge

}

This JSON Object in Purdue.json will instruct the system to maintain added separation between the internal surface
of the cuff and the nerve of:

The div element has its own alignment attribute, align.

108 Chapter 21. Cuff placement on nerve

CHAPTER

TWENTYTWO

FIBERSET

Runner’s run() method first loads JSON configuration files for Sample, Model, and Sim into memory and instanti-
ates a Python Sample class. The Sample instance produces two-dimensional CAD files that define nerve and fascicle
tissue boundaries in COMSOL from the input binary masks. The run() method also instantiates Python Simulation
classes using the Model and Sim configurations to define the coordinates of “fibersets” where “potentials” are sampled
in COMSOL to be applied extracellularly in NEURON and to define the current amplitude versus time stimulation
waveform used in NEURON (“waveforms”). The Simulation class is unique in that it performs operations both before
and after the program performs a handoff to Java for COMSOL operations. Before the handoff to Java, each Simulation
writes fibersets/ and waveforms/ to file, and after the Java operations are complete, each Simulation builds fold-
ers (i.e., n_sims/), each containing NEURON code and input data for simulating fiber responses for a single Sample,
Model, fiberset, waveform, and contact weighting. Each instance of the Simulation class is saved as a Python object
using Saveable (S9 Text), which is used for resuming operations after the handoff() method to Java is completed.

Within the write_fibers() method of the Python Simulation class, the Python Fiberset class is instantiated with
an instance of the Python Sample class, Model, and Sim. Fiberset’s generate() method creates a set of (x,y,z)-
coordinates for each Fiberset defined in Sim. The (x,y)-coordinates in the nerve cross section and z-coordinates along
the length of the nerve are saved in fibersets/.

Fiberset’s method _generate_xy() (first character being an underscore indicates intended for use only by the Fiberset
class) defines the coordinates of simulated fibers in the cross section of the nerve according to the “xy_parameters”
JSON Object in Sim (S8 Text). The pipeline defines (x,y)-coordinates of the fibers in the nerve cross section accord-
ing to the user’s selection of sampling rules (CENTROID, UNIFORM_DENSITY, UNIFORM_COUNT, and WHEEL); the pre-
defined modes for defining fiber locations are easily expandable. To add a new mode for defining (x,y)-coordinates,
the user must add a “FiberXYMode” in src/utils/enums.py (S6 Text) and add an IF statement code block in
_generate_xy() containing the operations for constructing “points” (List[Tuple[float]]). The user must add
the parameters to define how fibers are placed in the nerve within the “xy_parameters” JSON Object in Sim. In
Sim, the user may control the “plot” parameter (Boolean) in the “fibers” JSON Object to create a figure of fiber (x,y)-
coordinates on the slide. Alternatively, the user may plot a Fibserset using the plot_fiberset.py script (S33 Text).

Fiberset’s private method _generate_z() defines the coordinates of the compartments of simulated fibers along the
length of the nerve based on global parameters in config/system/fiber_z.json and simulation-specific parameters
in the “fibers” JSON Object in Sim (i.e., “mode”, “diameter”, “min”, “max”, and “offset”).

109

ASCENT, Release v1.1.2

110 Chapter 22. Fiberset

CHAPTER

TWENTYTHREE

IMPLEMENTATION OF NEURON FIBER MODELS

23.1 Myelinated fiber models

The CreateAxon_Myel.hoc file is loaded in Wrapper.hoc if the user chooses either “MRG_DISCRETE” or
“MRG_INTERPOLATION”. The length of each section in NEURON varies depending on both the diameter and the
“FiberGeometry” mode chosen in Sim.

23.1.1 MRG discrete diameter (as previously published)

The “FiberGeometry” mode “MRG_DISCRETE” in Sim instructs the program to simulate a double cable structure for
mammalian myelinated fibers [1,2]. In the pipeline, we refer to this model as “MRG_DISCRETE” since the model’s
geometric parameters were originally published for a discrete list of fiber diameters: 1, 2, 5.7, 7.3, 8.7, 10, 11.5, 12.8,
14.0, 15.0, and 16.0 m. Since the MRG fiber model has distinct geometric dimensions for each fiber diameter, the
parameters are stored in config/system/fiber_z.json as lists in the “MRG_DISCRETE” JSON Object, where a
value’s index corresponds to the index of the discrete diameter in “diameters”. The parameters are used by the Fiberset
class to create fibersets/ (i.e., coordinates to probe potentials/ from COMSOL) for MRG fibers.

23.1.2 MRG interpolated diameters

The “FiberGeometry” mode “MRG_INTERPOLATION” in Sim instructs the program to simulate a double cable struc-
ture for mammalian myelinated fibers for any diameter fiber between 2 and 16 µm (throws an error if not in this range)
by using an interpolation over the originally published fiber geometries [1,2]. In the pipeline, we refer to this model
as “MRG_INTERPOLATION” since it enables the user to simulate any fiber diameter between the originally published
diameters.

The parameters in the “MRG_INTERPOLATION” JSON Object in config/system/fiber_z.json are used by the
Fiberset class to create fibersets/ (i.e., coordinates at which to sample potentials/ from COMSOL) for interpo-
lated MRG fibers. Since the parameter values relate to fiber “diameter” as a continuous variable, the expressions for
all the dimensions that change with fiber diameter, as shown in Figure A, are stored as a String that is computed using
Python’s built-in “eval()” function.

111

ASCENT, Release v1.1.2

Figure A. Piecewise polynomial fits to published MRG fiber parameters. Single quadratic fits were used for all param-
eters except for internode length, which has a linear fit below 5.643 µm (using MRG data at 2 and 5.7 µm) and a single
quadratic fit at diameters greater than or equal to 5.643 µm (using MRG data >= 5.7 µm); 5.643 µm is the fiber diameter
at which the linear and quadratic fits intersected. The fiber diameter is the diameter of the myelin. “Paranode 1” is the
MYSA section, “paranode 2” is the FLUT section, and “internode” is the STIN section. The axon diameter is the same
for the node of Ranvier and MYSA (“node diameter”), as well as for the FLUT and STIN (“axon diameter”). The node
and MYSA lengths are fixed at 1 and 3 m, respectively, for all fiber diameters.

We compared fiber activation thresholds between the originally published MRG fiber models and the interpolated MRG
ultrastructure (evaluated at the original diameters) at a single location in a rat cervical vagus nerve stimulated with the
bipolar Purdue cuff. Each fiber was placed at the centroid of the best-fit ellipse of the monofascicular nerve sample.
The waveform was a single biphasic pulse using “BIPHASIC_PULSE_TRAIN_Q_BALANCED_UNEVEN_PW” with 100 µs
for the first phase, 100 µs interphase (0 mA), and 400 µs for the second phase (cathodic/anodic at one contact and
anodic/cathodic at the other contact). The thresholds between the originally published models and the interpolation of
the MRG fiber diameters are compared in Figure B below. The threshold values were determined using a binary search
until the upper and lower bound stimulation amplitudes were within 1%.

112 Chapter 23. Implementation of NEURON fiber models

ASCENT, Release v1.1.2

Figure B. Comparison of thresholds between the originally published models and the interpolation of the MRG fiber
diameters (evaluated at the original diameters). Thresholds are expected to vary between the originally published
models and the interpolated fiber geometries given their slightly different ultrastructure parameters (Figure A). Used
original MRG thresholds as reference.

23.2 Unmyelinated Fiber Models

The pipeline includes several unmyelinated (i.e., C-fiber) models [3-5]. Users should be aware of the “delta_zs”
parameter that they are using in config/system/fiber_z.json, which controls the spatial discretization of the fiber
(i.e., the length of each section).

23.2. Unmyelinated Fiber Models 113

ASCENT, Release v1.1.2

23.3 References

1. McIntyre CC, Grill WM, Sherman DL, Thakor N V. Cellular effects of deep brain stimulation: model-based
analysis of activation and inhibition. J Neurophysiol. 2004 Apr;91(4):1457–69. Available from: https://doi.org/
10.1152/jn.00989.2003

2. McIntyre CC, Richardson AG, Grill WM. Modeling the excitability of mammalian nerve fibers: influence of
afterpotentials on the recovery cycle. J Neurophysiol. 2002 Feb;87(2):995–1006. Available from: https://doi.
org/10.1152/jn.00353.2001

3. Sundt D, Gamper N, Jaffe DB. Spike propagation through the dorsal root ganglia in an unmyelinated sensory
neuron: a modeling study. J Neurophysiol. 2015 Dec;114(6):3140–53. Available from: https://doi.org/10.1152/
jn.00226.2015

4. Tigerholm J, Petersson ME, Obreja O, Lampert A, Carr R, Schmelz M, et al. Modeling activity-
dependent changes of axonal spike conduction in primary afferent C-nociceptors. J Neurophysiol. 2014
May;111(9):1721–35. Available from: https://doi.org/10.1152/jn.00777.2012

5. Rattay F, Aberham M. Modeling axon membranes for functional electrical stimulation. IEEE Trans Biomed Eng.
1993 Dec;40(12):1201–9. Available from: https://doi.org/10.1109/10.250575

114 Chapter 23. Implementation of NEURON fiber models

https://doi.org/10.1152/jn.00989.2003
https://doi.org/10.1152/jn.00989.2003
https://doi.org/10.1152/jn.00353.2001
https://doi.org/10.1152/jn.00353.2001
https://doi.org/10.1152/jn.00226.2015
https://doi.org/10.1152/jn.00226.2015
https://doi.org/10.1152/jn.00777.2012
https://doi.org/10.1109/10.250575

CHAPTER

TWENTYFOUR

SIMULATION PROTOCOLS

Fiber response to electrical stimulation is computed by applying electric potentials along the length of a fiber from
COMSOL as a time-varying signal in NEURON. The stimulation waveform, saved in a n_sim’s data/inputs/
directory as waveform.dat, is unscaled (i.e., the maximum current magnitude at any timestep is +/-1), and is then
scaled by the current amplitude in RunSim.hoc to either simulate fiber thresholds of activation or block with a binary
search algorithm, or response to set amplitudes.

24.1 Binary search

In searching for activation thresholds (i.e., the minimum stimulation amplitude required to generate a propagating action
potential) or block thresholds (i.e., the minimum stimulation amplitude required to block the propagation of an action
potential) in the pipeline, the NEURON code uses a binary search algorithm.

The basics of a binary search algorithm are as follows. By starting with one value that is above threshold (i.e., upper
bound) and one value that is below threshold (i.e., lower bound), the program tests the midpoint amplitude to determine
if it is above or below threshold. If the midpoint amplitude is found to be below threshold, the midpoint amplitude
becomes the new lower bound. However, if the midpoint amplitude is found to be above threshold, the midpoint
amplitude becomes the new upper bound. At each iteration of this process, half of the remaining amplitude range is
removed. The process is continued until the termination criteria is satisfied (e.g., some threshold resolution tolerance
is achieved). The average performance of a binary search algorithm is (log(n)) where n is the number of elements in
the search array (i.e., linearly spaced range of amplitudes).

In the pipeline, the binary search protocol parameters (i.e., activation or block criteria, threshold criteria, method for
searching for starting upper- and lower bounds, or termination criteria) are contained in the “protocol” JSON Object
within Sim (S8 Text).

24.2 Activation threshold protocol

The pipeline has a NEURON simulation protocol for determining thresholds of activation of nerve fibers in response
to extracellular stimulation. Threshold amplitude for fiber activation is defined as the minimum stimulation ampli-
tude required to initiate a propagating action potential. The pipeline uses a binary search algorithm to converge on
the threshold amplitude. Current amplitudes are determined to be above threshold if the stimulation results in at least
n_AP propagating action potentials detected at 75% of the fiber’s length (note: location can be specified by user with
“ap_detect_location” parameter in Sim) (S8 Text). The parameters for control over the activation threshold pro-
tocol are found in Sim within the “protocol” JSON Object (S8 Text).

115

ASCENT, Release v1.1.2

24.3 Block threshold protocol

The pipeline has a NEURON simulation protocol for determining block thresholds for nerve fibers in response to
extracellular stimulation. Threshold amplitude for fiber block is defined as the minimum stimulation amplitude required
to block a propagating action potential. The simulation protocol for determining block thresholds starts by delivering
the blocking waveform through the cuff. After a user-defined delay during the stimulation onset period, the protocol
delivers a test pulse (or a train of pulses if the user chooses) where the user placed it (see “ind” parameter in Sim within
the “intracellular_stim” JSON Object (S8 Text)), near the proximal end. The code checks for action potentials
near the distal end of the fiber (see “ap_detect_location” parameter in Sim within the “threshold” JSON Object
(S8 Text)). If at least one action potential is detected, then transmission of the test pulse occurred (i.e., the stimulation
amplitude is below block threshold). However, the absence of an action potential indicates block (i.e., the stimulation
amplitude is above block threshold). The pipeline uses a binary search algorithm to converge on the threshold amplitude.
The parameters for control over the block threshold protocol are found in Sim within the “protocol” JSON Object (S8
Text).

The user must be careful in setting the initial upper and lower bounds of the binary search for block thresholds. Es-
pecially for small diameter myelinated fibers, users must be aware of and check for re-excitation using a stimulation
amplitude sweep [1].

24.4 Response to set amplitudes

Alternatively, users may simulate the response of nerve fibers in response to extracellular stimulation for a user-specified
set of amplitudes. The “protocol” JSON Object within Sim contains the set of amplitudes that the user would like to
simulate (S8 Text).

24.5 References

1. Pelot NA, Behrend CE, Grill WM. Modeling the response of small myelinated axons in a compound nerve to
kilohertz frequency signals. J Neural Eng. 2017 Aug;14(4):46022. Available from: https://doi.org/10.1088/
1741-2552/aa6a5f

116 Chapter 24. Simulation Protocols

https://doi.org/10.1088/1741-2552/aa6a5f
https://doi.org/10.1088/1741-2552/aa6a5f

CHAPTER

TWENTYFIVE

MODELWRAPPER CLASS

25.1 ModelWrapper

The ModelWrapper class in Java takes inputs of the ASCENT_PROJECT_PATH (env.json, S7 and S8 Text) and a list
of Run paths. ModelWrapper contains a COMSOL “model” object, model source directory (String), model destina-
tion directory (String), an “IdentifierManager” (S26 Text), and HashMaps with key-value pairs linking COMSOL
domains to unions of domains. ModelWrapper has accessor methods getModel() for retrieving the model object,
getRoot() for retrieving the project path’s root String, and getDest() for retrieving the default saving destination
String. ModelWrapper also has mutator methods for changing an instance’s root String (setRoot()) and default
saving destination String (setDest()).

ModelWrapper’s main() method starts an instance of COMSOL and loads Run, Sample, Model, and Sim config-
urations as JSON Objects into memory. We developed Java class JSONio (S26 Text) for reading and writing JSON
Objects to file.

Since each Run contains a list of Model and Sim configurations for a single Sample (note: n_sims/ are created for
all combinations of Model and Sim for the Sample in a Run), ModelWrapper iterates over Model configurations (e.g.,
different cuff electrodes or material assignments) to define the FEM geometry, mesh, assign boundary conditions and
physics, and solve. The resulting FEM potentials are obtained for 1 mA applied to one of the electrode contacts while
the electric potential on the other contacts is floating (i.e., condition of continuity); this is repeated for each contact
to define the “bases” of the solution space [1]. For each Sim, the program then creates a superposition of the “bases”
for extracellular potentials at the coordinates defined in fibersets/ and ss_coords/ (i.e., the coordinates along the
length of the nerve used to “super-sample” potentials for later creating potentials/ without the need for COMSOL). We
wrote the code such that the program will continue with creating potentials/, ss_bases/ (i.e., the potentials along the
length of the nerve corresponding 1:1 to the coordinates saved in ss_coords/, which are added together according to
the contact weighting defined by “active_srcs” in Sim to create potentials/ for specific fiber models), and NEURON
simulations for any remaining Model indices even if the processes for a single Model fails. For each Model, the program
appends a Boolean to “models_exit_status” in Run (true if successful, false if not successful).

25.2 References

1. Pelot NA, Thio BJ, Grill WM. Modeling Current Sources for Neural Stimulation in COMSOL. Front Com-
put Neurosci [Internet]. 2018;12:40. Available from: https://www.frontiersin.org/article/10.3389/fncom.2018.
00040

117

https://www.frontiersin.org/article/10.3389/fncom.2018.00040
https://www.frontiersin.org/article/10.3389/fncom.2018.00040

ASCENT, Release v1.1.2

118 Chapter 25. ModelWrapper Class

CHAPTER

TWENTYSIX

MAKING GEOMETRIES IN COMSOL (PART CLASS)

26.1 Part.createEnvironmentPartPrimitive()

The createEnvironmentPartPrimitive() method in Java (src/model/Part.java) creates a “part” within the
“Geometry Parts” node of the COMSOL “model” object to generalize the cylindrical medium surrounding the nerve
and electrode. Programmatically selecting domains and surfaces in COMSOL requires that geometry operations be
contributed to “selections” (csel<#>). In this simple example of a part primitive, the im.labels String[] contains
the string “MEDIUM” which is used to label the COMSOL selection (csel<#>) for the medium domain by association
with an IdentifierManager (S26 Text). When the geometry of the primitive is built, the resulting medium domain’s
csel<#> can be accessed instead with the key “MEDIUM” in the IdentifierManager, thereby improving readability
and accessibility when materials and boundary conditions are assigned in the createEnvironmentPartInstance()
method. Furthermore, if the operations of a part primitive are modified, the indexing of the csel<#> labels are auto-
matically handled.

26.2 Part.createCuffPartPrimitive()

The createCuffPartPrimitive() method in Java (src/model/Part.java) is analogous to
createEnvironmentPartPrimitive(), except that it contains the operations required to define cuff part ge-
ometries, which are generally more complex. Examples of cuff part primitives include standard geometries for contact
conductors (e.g., Ribbon Contact Primitive, Wire Contact Primitive, Circle Contact Primitive, and Rectangular
Contact Primitive), cuff insulation (e.g., Tube Cuff), cuff fill (e.g., saline, mineral oil), and specific interactions of a
cuff insulator and electrode contact (e.g., LivaNova-inspired helical coil) (S16 Text).

26.3 Part Instances

Part instances are a COMSOL Geometry Feature (“pi<#>”) in the “Geometry” node based on user-defined input
parameters stored in Model and default parameters for “preset” cuffs. A part instance is an instantiation of a part
primitive previously defined in the COMSOL “model” object and will take specific form based on its input parameters.

119

ASCENT, Release v1.1.2

26.3.1 Part.createEnvironmentPartInstance()

The createEnvironmentPartInstance()method in Java creates a “part instance” in COMSOL’s “Geometry” node
based on a primitive previously defined with createEnvironmentPartPrimitive(). This method just applies to
building the surrounding medium. The method takes inputs, with data types and examples in parentheses: instanceID
(String: “pi<#>”), instanceLabel (String: “medium”), mediumPrimitiveString (String: Key for the medium
part stored in the identifierManager), an instance of ModelWrapper, and Model as a JSON Object. Within the
“medium” JSON Object in Model, the parameters required to instantiate the environment part primitive are defined.

26.3.2 Part.createCuffPartInstance()

The createCuffPartInstance() method in Java is analogous to createEnvironmentPartInstance(), but
it is used to instantiate cuff part geometries. We decided to separate these methods since all products of
createCuffPartInstance() will be displaced and rotated by the same cuff shift (x,y,z) and rotation values.

120 Chapter 26. Making geometries in COMSOL (Part class)

CHAPTER

TWENTYSEVEN

CONTROL OF MEDIUM SURROUNDING NERVE AND CUFF
ELECTRODE

The medium surrounding the nerve and cuff electrode (e.g., fat, skeletal muscle) must contain a “proximal” domain,
which runs the full length of the nerve, and may optionally include a “distal” domain. The parameterization for the ge-
ometry of the “proximal” and “distal” domains is shown below in Figure A. For details on how to define the “proximal”
and “distal” domain geometries and meshing parameters, see model.json in S8 Text.

Figure A. The user must define a “proximal” domain, and may optionally define a “distal” domain for independent
assignment of meshing parameters for the site of stimulation from the rest of the FEM. The “proximal” domain runs
the full length of the nerve and is anchored at (0,0,0). The distal domain’s radius and length may be independently
assigned, and the entire distal domain may be shifted (“shift”: (x, y, z)). Having a proximal domain that is overly
voluminous can significantly decrease COMSOL meshing efficiency and even, rarely, cause errors. At all costs, avoid
having a proximal or distal domain whose boundary intersects with a geometry (other than the nerve ends, which are
by definition at the longitudinal boundaries of the proximal domain) or the boundary of other geometries (e.g., the
cuff-nerve boundary); this will likely create a meshing error.

121

ASCENT, Release v1.1.2

122 Chapter 27. Control of medium surrounding nerve and cuff electrode

CHAPTER

TWENTYEIGHT

JAVA UTILITY CLASSES

28.1 IdentifierManager

In working with highly customized COMSOL FEMs, we found it convenient to abstract away from the underlying
COMSOL indexing to improve code readability and enable scalability as models increase in geometric complexity. We
developed a class named IdentifierManager that allows the user to assign their own String to identify a COMSOL
geometry feature tag (e.g., wp<#>, cyl<#>, rev<#>, dif<#>) or selection (i.e., csel<#>).

We use IdentifierManagers to name and keep track of identifier labels within a PartPrimitive.
IdentifierManagers assigning tags for products of individual operations to a unique “pseudonym” in HashMaps as
a key-value pair. Additionally, we assign resulting selections (“csel<#>”) to meaningful unique pseudonyms to later
assign to meshes, materials, or boundary conditions.

We keep a running total for tags of IdentifierStates (i.e., the total number of uses of an individual COMSOL tag)
and HashMap of IdentifierPseudonyms (i.e., a HashMap containing key (pseudonym) and value (COMSOL tag,
e.g., “wp1”)).

IdentifierManager has a method next() which takes inputs of a COMSOL tag (e.g., wp, cyl, rev, dif) or se-
lection (i.e., csel) without its index and a user’s unique pseudonym String. The method appends the next index
(starting at 1) to the COMSOL tag or selection and puts the COMSOL tag or selection and associated pseudonym
in the IdentifierPseudonyms HashMap. The method also updates the IdentifierStates HashMap total for the
additional instance of a COMSOL tag or selection.

To later reference a COMSOL tag or selection, IdentifierManager has a get() method which takes the input of the
previously assigned pseudonym key and returns the COMSOL tag or selection value from the IdentifierPseudonyms
HashMap.

To accommodate mesh recycling (see ModelSearcher below), we save a COMSOL model’s IdentifierManagers
to later access selections for updating model materials and physics. Therefore, we developed IdentifierManager
methods toJSONObject() and fromJSONObject() which saves an IdentifierManager to a JSON file and loads
an IdentifierManager into Java from a JSON Object, respectively.

28.2 JSONio

JSONio is a convenient Java class used for reading and writing JSON Objects to file. The read() method takes an
input String containing the file path to read and returns a JSON Object to memory. The write() method takes an input
String containing the file path for the saving destination and a JSON Object containing the data to write to file.

123

https://docs.oracle.com/javase/8/docs/api/java/util/HashMap.html

ASCENT, Release v1.1.2

28.3 ModelSearcher

The ModelSearcher class in Java is used to look for previously created FEM meshed geometries that can be repur-
posed. For example, if Model configurations differ only in their material properties or boundary conditions and the
previous Model’s *.mph file with the mesh (i.e., mesh.mph) was saved, then it is redundant to build and mesh the
same model geometry for a new Model configuration. The methods of the ModelSearcher class can save enormous
amounts of computation time in parameter sweeps of Model if the mesh can be recycled. The user is unlikely to in-
terface directly with this method as it operates behind the scenes, but if the user adds new parameter values to Model,
then the user must also add those values to config/templates/mesh_dependent_model.json to indicate whether
the added parameter value needs to match between FEMs to recycle the mesh (explained further below). Generally,
changes in geometry or meshing parameters need to match, but changes in material properties or boundary conditions
do not, since they do not change the FEM geometry.

Specifically, this class compares Model configurations to determine if their parameters are compatible to repurpose the
geometry and mesh from a previously generated COMSOL model using the meshMatch()method. The meshMatch()
method takes the inputs of a reference JSON (i.e., config/templates/mesh_dependent_model.json, see S7
and S8 Text) containing conditions for compatibility and a JSON Object for each of two Model configurations to
compare. The parameter keys correspond one-to-one in Model and mesh_dependent_model.json. However, in
mesh_dependent_model.json, rather than numerical or categorical values for each parameter key, the keys’ values
are a Boolean indicating if the values between two Model configurations must be identical to define a “mesh match”. For
two Model configurations to be a match, all parameters assigned with the Boolean true in mesh_dependent_model.
json must be identical. Model configurations that differ only in values for parameters that are assigned the Boolean
false are considered a mesh match and do not require that the geometry be re-meshed.

In the class’s searchMeshMatch()method, the program looks through all Model configurations under a given Sample
and applies the meshMatch() method. If a Model match is found, searchMeshMatch returns a Match class, which is
analogous to the ModelWrapper class, using the path of the matching Model with the fromMeshPath() method.

124 Chapter 28. Java utility classes

CHAPTER

TWENTYNINE

DEFINING AND ASSIGNING MATERIALS IN COMSOL

Materials are defined in the COMSOL “Materials” node for each material “function” indicated in the “preset” cuff
configuration file (i.e., cuff “insulator”, contact “conductor”, contact “recess”, and cuff “fill”) and nerve domain (i.e.,
endoneurium, perineurium, epineurium). Material properties for each function are assigned in Model’s “conductivi-
ties” JSON Object by either referencing materials in the default materials library (config/system/materials.json)
by name, or with explicit definitions of a materials name and conductivity as a JSON Object (S8 Text).

29.1 ModelWrapper.addMaterialDefinitions()

The user is unlikely to interface directly with the addMaterialDefinitions() method in Java as it operates behind
the scenes. The method takes an input of a list of strings containing the material functions (i.e., endoneurium, per-
ineurium, epineurium, cuff “fill”, cuff “insulator”, contact “conductor”, and contact “recess”), Model, and a COM-
SOL ModelParamGroup for containing the material properties as a COMSOL “Parameters Group” under COM-
SOL’s “Global Definitions”. The method then loops over all material functions, creates a new material if it does
not yet exist as “mat<#>” using Part’s defineMaterial() method, and adds the identifier (e.g., “mat1”) to the
IdentifierManager.

29.2 Part.defineMaterial()

The user is unlikely to interface directly with the defineMaterial() method in Java as it operates behind the scenes
to add a new material to the COMSOL “Materials” node under “Global Definitions”. The method takes inputs of the
material’s identifier in COMSOL (e.g., “mat1”), function (e.g., cuff “fill”), Model, a library of predefined materials
(e.g., materials.json), a ModelWrapper instance, and the COMSOL ModelParamGroup for material conductivities.
The defineMaterial() method uses materials present in Model’s “conductivities” JSON Object to assign to each
material function in the COMSOL model (e.g., insulator, conductor, fill, endoneurium, perineurium, epineurium, or
medium). The material value for a function key in Model is either a string for a pre-defined material in materials.
json, or a JSON Object (containing unit, label, and value) for a custom material. Assigning material conductivities
to material functions in this manner enables control for a user to reference a pre-defined material or explicitly link
a custom material to a COMSOL model. In either the case of a predefined material in materials.json or custom
material in Model, if the material is anisotropic, the material value is assigned a string “anisotropic” which tells the
program to look for independent “sigma_x”, “sigma_y”, and “sigma_z” values in the material JSON Object.

125

ASCENT, Release v1.1.2

29.3 ModelWrapper.addCuffPartMaterialAssignment()

The user is unlikely to interface directly with the addCuffPartMaterialAssignment() method in Java as it operates
behind the scenes. The method loads in a cuff part primitive’s labels from its IdentifierManager. The method loops
over the list of material JSON Objects in the “preset” cuff configuration file. For each material function in the “preset”
cuff configuration file, the method creates a COMSOL Material Link to assign a previously defined selection in a cuff
part instance to a defined material.

29.4 ModelWrapper.addCuffPartMaterialAssignments()

The user is unlikely to interface directly with the addCuffMaterialAssignments() method in Java as it operates
behind the scenes. The method loops through all part instances in the cuff configuration file, which is linked to Model
by a string of its file name under the “preset” key, and calls the addCuffMaterialAssignment() method for each
part instance. As described in addCuffPartMaterialAssignment() above, a material is connected to the selection
within the part primitive by its label. In COMSOL, material links appear in the “Materials” node. COMSOL assigns
the material links in the order of the part instances defined in the “preset” cuff configuration file, which is important
since material links overwrite previous domain assignments. For this reason, it is important to list part instances in
“preset” cuff files in a nested order (i.e., the outermost domains first, knowing that domains nested in space within them
will overwrite earlier domain assignments).

29.5 Adding and assigning default material properties

Default material properties defined in config/system/materials.json are listed in Table A. To accom-
modate automation of frequency-dependent material properties (for a single frequency, i.e., sinusoid), param-
eters for material conductivity that are dependent on the stimulation frequency are calculated in Runner’s
compute_electrical_parameters() method and saved to Model before the handoff() method is called. Our
pipeline supports calculation of the frequency-dependent conductivity of the perineurium based on measurements
from the frog sciatic nerve [1] using the rho_weerasuriya() method in the Python Waveform class. See Fig. 2
for identification of tissue types in a compound nerve cross section (i.e., epineurium, perineurium, endoneurium).

Table A. Default material conductivities.

Material Conductivity References
silicone 10^-12 [S/m] [2]
platinum 9.43 10^6 [S/m] [3]
endoneurium {1/6, 1/6, 1/1.75} [S/m] [4,5]
epineurium 1/6.3 [S/m] [6-8]
muscle {0.086, 0.086, 0.35} [S/m] [9]
fat 1/30 [S/m] [10]
encapsulation 1/6.3 [S/m] [7]
saline 1.76 [S/m] [11]
perineurium 1/1149 [S/m] [1,5]

126 Chapter 29. Defining and assigning materials in COMSOL

https://doi.org/10.1371/journal.pcbi.1009285.g002

ASCENT, Release v1.1.2

29.6 References

1. Weerasuriya A, Spangler RA, Rapoport SI, Taylor RE. AC impedance of the perineurium of the frog sciatic
nerve. Biophys J. 1984 Aug;46(2):167–74. https://dx.doi.org/10.1016%2FS0006-3495(84)84009-6

2. Callister WD, Rethwisch DG. Fundamentals of Material Science and Engineering An Integrated Approach. In:
Fundamentals Of Material Science and Engineering An Integrated Approach. 2012.

3. de Podesta M, Laboratory NP, UK. Understanding the Properties of Matter. Understanding the Properties of
Matter. 1996.

4. Ranck JB, BeMent SL. The specific impedance of the dorsal columns of cat: An anisotropic medium. Exp
Neurol [Internet]. 1965 Apr 1 [cited 2020 Apr 20];11(4):451–63. Available from: https://doi.org/10.1016/
0014-4886(65)90059-2

5. Pelot NA, Behrend CE, Grill WM. On the parameters used in finite element modeling of compound periph-
eral nerves. J Neural Eng [Internet]. 2019;16(1):16007. Available from: http://dx.doi.org/10.1088/1741-2552/
aaeb0c

6. Stolinski C. Structure and composition of the outer connective tissue sheaths of peripheral nerve. J Anat [Inter-
net]. 1995 Feb;186 (Pt 1(Pt 1):123–30. Available from: https://pubmed.ncbi.nlm.nih.gov/7649808

7. Grill WM, Mortimer TJ. Electrical properties of implant encapsulation tissue. Ann Biomed Eng [Internet].
1994;22(1):23–33. Available from: https://doi.org/10.1007/BF02368219

8. Pelot NA, Behrend CE, Grill WM. Modeling the response of small myelinated axons in a compound nerve to
kilohertz frequency signals. J Neural Eng. 2017 Aug;14(4):46022. Available from: https://doi.org/10.1088/
1741-2552/aa6a5f

9. Gielen FLH, Wallinga-de Jonge W, Boon KL. Electrical conductivity of skeletal muscle tissue: Experimental
results from different musclesin vivo. Med Biol Eng Comput [Internet]. 1984;22(6):569–77. Available from:
https://doi.org/10.1007/BF02443872

10. Geddes LA, Baker LE. The specific resistance of biological material—A compendium of data for the biomedical
engineer and physiologist. Med Biol Eng [Internet]. 1967;5(3):271–93. Available from: https://doi.org/10.
1007/BF02474537

11. Horch K. Neuroprosthetics: Theory and practice: Second edition. Neuroprosthetics: Theory and Practice: Sec-
ond Edition. 2017. 1–925 p.

29.6. References 127

https://dx.doi.org/10.1016%2FS0006-3495(84)84009-6
https://doi.org/10.1016/0014-4886(65)90059-2
https://doi.org/10.1016/0014-4886(65)90059-2
http://dx.doi.org/10.1088/1741-2552/aaeb0c
http://dx.doi.org/10.1088/1741-2552/aaeb0c
https://pubmed.ncbi.nlm.nih.gov/7649808
https://doi.org/10.1007/BF02368219
https://doi.org/10.1088/1741-2552/aa6a5f
https://doi.org/10.1088/1741-2552/aa6a5f
https://doi.org/10.1007/BF02443872
https://doi.org/10.1007/BF02474537
https://doi.org/10.1007/BF02474537

ASCENT, Release v1.1.2

128 Chapter 29. Defining and assigning materials in COMSOL

CHAPTER

THIRTY

DEFINITION OF PERINEURIUM

30.1 Definition of perineurium

The perineurium is a thin highly resistive layer of connective tissue and has a profound impact on thresholds of ac-
tivation and block. Our previous modeling work demonstrates that representing the perineurium with a thin layer
approximation (Rm = rho*peri_thk), rather than as a thinly meshed domain, reduces mesh complexity and is a reason-
able approximation [1]. Therefore, perineurium can be modeled with a thin layer approximation (except with “peanut”
fascicles; see an example in Fig 2), termed “contact impedance” in COMSOL (if Model’s “use_ci” parameter is true

(S8 Text)), which relates the normal component of the current density through the surface to the drop in

electric potentials and the sheet resistance :

The sheet resistance is defined as the sheet thickness divided by the material bulk conductivity :

Our previously published work quantified the relationship between fascicle diameter and perineurium thickness [2]
(Table A).

Table A. Previously published relationships between fascicle diameter and perineurium thickness.

Species peri_thk: f (species, dfasc) References
Rat peri_thk = 0.01292*dfasc + 1.367 [um] [2]
Pig peri_thk = 0.02547*dfasc + 3.440 [um] [2]
Human peri_thk = 0.03702*dfasc + 10.50 [um] [2]

The “rho_perineurium” parameter in Model can take either of two modes:

• “RHO_WEERASURIYA”: The perineurium conductivity value changes with the frequency of electrical stim-
ulation (for a single value, not a spectrum, defined in Model as “frequency”) and temperature (using a Q10
adjustment, defined in Model as “temperature”) based on measurements of frog sciatic perineurium [1,3]. The
equation is defined in src/core/Waveform.py in the rho_weerasuriya() method.

• “MANUAL”: Conductivity value assigned to the perineurium is as explicitly defined in either materials.json
or Model without any corrections for temperature or frequency.

129

https://doi.org/10.1371/journal.pcbi.1009285.g002

ASCENT, Release v1.1.2

30.2 References

1. Pelot NA, Behrend CE, Grill WM. On the parameters used in finite element modeling of compound periph-
eral nerves. J Neural Eng [Internet]. 2019;16(1):16007. Available from: http://dx.doi.org/10.1088/1741-2552/
aaeb0c

2. Pelot NA, Goldhagen GB, Cariello JE, Musselman ED, Clissold KA, Ezzell JA, et al. Quantified Morphol-
ogy of the Cervical and Subdiaphragmatic Vagus Nerves of Human, Pig, and Rat. Front Neurosci [Internet].
2020;14:1148. Available from: https://doi.org/10.3389/fnins.2020.601479

3. Weerasuriya A, Spangler RA, Rapoport SI, Taylor RE. AC impedance of the perineurium of the frog sciatic nerve.
Biophys J. 1984 Aug;46(2):167–74. Available from: https://dx.doi.org/10.1016%2FS0006-3495(84)84009-6

130 Chapter 30. Definition of perineurium

http://dx.doi.org/10.1088/1741-2552/aaeb0c
http://dx.doi.org/10.1088/1741-2552/aaeb0c
https://doi.org/10.3389/fnins.2020.601479
https://dx.doi.org/10.1016%2FS0006-3495(84)84009-6

CHAPTER

THIRTYONE

DATA INTERCHANGE BETWEEN COMSOL AND NEURON

The user is unlikely to interface directly with ModelWrapper’s extractAllPotentials() method in Java as it op-
erates behind the scenes. The method takes input arguments for the project path and a run path. Using the run path,
the method loads Run, and constructs lists of Model and Sim for which it will call extractPotentials() for each
fiberset. COMSOL is expecting a (3 n) matrix of coordinates (Double[3][n]), defining the (x,y,z)-coordinates for each
of n points.

The Java COMSOL API methods setInterpolationCoordinates() and getData() for a model object are fast
compared to the time for a machine to load a COMSOL “model” object to memory from file. Therefore, the
extractAllPotentials() method is intentionally configured to minimize the number of times a “basis” COM-
SOL “model” object is loaded into memory. We accomplish this by looping in the following order: Model, bases,
Sims, fibersets (i.e., groups of fibers with identical geometry/channels, but different (x,y)-locations and/or longitudi-
nal offsets), then fibers. With this approach, we load each COMSOL “model” object only once (i.e., *.mph members
of bases/). Within the loop, the extractPotentials() method constructs the bases (double[basis index][sim in-
dex][fiberset index][fiber index]) for each model (units: Volts). With the bases in memory, the program constructs the
potentials for inputs to NEURON by combining bases by their contact weights and writes them to file within potentials/
(or ss_bases/), which mirrors fibersets/ (or ss_coords/) in contents.

131

ASCENT, Release v1.1.2

132 Chapter 31. Data interchange between COMSOL and NEURON

CHAPTER

THIRTYTWO

PYTHON SIMULATION CLASS

32.1 (Pre-Java)

The user is unlikely to interface directly with Simulation’s resolve_factors() method as it operates behind the
scenes. The method searches through Sim for lists of parameters within the “fibers” and “waveform” JSON Objects
until the indicated number of dimensions (“n_dimensions” parameter in Sim, which is a handshake to prevent erroneous
generation of NEURON simulations) has been reached. The parameters over which the user has indicated to sweep in
Sim are saved to the Simulation class as a dictionary named “factors” with the path to each parameter in Sim.

The required parameters to define each type of waveform are in S8 Text. The Python Waveform class is configured
with Sim, which contains all parameters that define the Waveform. Since FEMs may have frequency-dependent
conductivities, the parameter for frequency of stimulation is optionally defined in Model (for frequency-dependent
material conductivities), but the pulse repetition frequency is defined in Sim as “pulse_repetition_freq”. The
write_waveforms() method instantiates a Python Waveform class for each “wave_set” (i.e., one combination of
stimulation parameters).

32.2 (Post-Java)

The unique combinations of Sim parameters are found with a Cartesian product from the listed values for individual
parameters in Sim: Waveforms Src_weights Fibersets. The pipeline manages the indexing of simulations. For ease of
debugging and inspection, into each n_sim/ directory we copy in a modified “reduced” version of Sim with any lists
of parameters replaced by the single list element value investigated in the particular n_sim/ directory.

The Simulation class loops over Model and Sim as listed in Run and loads the Python “sim.obj” object saved
in each simulation directory (sims/\<sim index\>/) prior to Python’s handoff() to Java. Using the Python
object for the simulation loaded into memory, the Simulation class’s method build_n_sims() loops over the
master_product_index (i.e., waveforms (src_weights fibersets)). For each master_product_index, the program
creates the n_sim file structure (sims/<sim index>/n_sims/<n_sim index>/data/inputs/ and sims/<sim
index>/n_sims/<n_sim index>/data/outputs/). Corresponding to the n_sim’s master_product_index,
files are copied into the n_sim directory for a “reduced” Sim, stimulation waveform, and fiber potentials. Additionally,
the program writes a HOC file (i.e., “launch.hoc”) containing parameters for and a call to our Wrapper.hoc file
using the Python HocWriter class.

To conveniently submit the n_sim directories to a computer cluster, we created methods within Simulation
named export_n_sims(), export_run(), and export_neuron_files(). The method export_n_sims() copies
n_sims from our native hierarchical file structure to a target directory as defined in the system env.json config file
by the value for the “ASCENT_NSIM_EXPORT_PATH” key. Within the target directory, a directory named n_sims/ con-
tains all n_sims. Each n_sim is renamed corresponding to its sample, model, sim, and master_product_index
(<sample_index>_<model_index>_<sim_index>_<master_product_index>) and is therefore unique. Anal-
ogously, export_run() creates a copy of Run within the target directory in a directory named runs/. Lastly,

133

ASCENT, Release v1.1.2

export_neuron_files() is used to create a copy of the NEURON *.hoc and *.mod files in the target directory
in directories named “HOC_Files” and “MOD_Files”, respectively.

134 Chapter 32. Python simulation class

CHAPTER

THIRTYTHREE

NEURON LAUNCH.HOC

The launch.hoc file defines the parameters and simulation protocol for modeling fiber response to electrical stimu-
lation in NEURON and is automatically populated based on parameters in Model and Sim. The launch.hoc file is
created by the HocWriter class. Parameters defined in launch.hoc span the categories of: environment (i.e., tem-
perature from Model), simulation time (i.e., time step, duration of simulation from Sim), fiber parameters (i.e., flags
for fiber geometry and channels, number of fiber nodes from Model, Sim, and config/system/fiber_z.json), in-
tracellular stimulation (i.e., delay from start of simulation, amplitude, pulse duration, pulse repetition frequency from
Sim), extracellular stimulation (i.e., path to waveform file in n_sim/ folder which is always data/inputs/waveform.
dat), flags to define the model parameters that should be recorded (i.e., Vm(t), Gating(t), Vm(x), Gating(x) from Sim),
the locations at which to record the parameters (nodes of Ranvier for myelinated axons from Sim), and parameters for
the binary search for thresholds (i.e., activation or block protocol, initial upper and lower bounds on the stimulation
amplitude for the binary search, and threshold resolution for the binary search from Sim). The launch.hoc file loads
Wrapper.hoc which calls all NEURON procedures. The launch.hoc file is created by the Python HocWriter class,
which takes inputs of the Sim directory, n_sim/ directory, and an exception configuration. When the HocWriter
class is instantiated, it automatically loads the fiber_z.json configuration file which contains all associated flags,
parameters, and rules for defining a fiber’s geometry and channel mechanisms in NEURON.

135

ASCENT, Release v1.1.2

136 Chapter 33. NEURON launch.hoc

CHAPTER

THIRTYFOUR

NEURON WRAPPER.HOC

The Wrapper.hoc file coordinates all program operations to create a biophysically realistic discrete cable fiber model,
simulate the fiber’s response to extracellular and intracellular stimulation, and record the response of the fiber. For
each fiber simulated in NEURON, outputs are saved to <n_sim_index>/data/outputs/. For simulations running
an activation or block threshold protocol, data outputs include threshold current amplitudes. For simulation of fiber
response to set amplitudes, the user may save state variables at each compartment in NEURON to file at discrete times
and/or locations.

34.1 Create fiber model

Based on the flag for “fiber_type” set in launch.hoc (associated by a fiber type parameter in fiber_z.json and
FiberGeometryMode (S8 Text)), Wrapper.hoc loads the corresponding template for defining fiber geometry dis-
cretization, i.e., “GeometryBuilder.hoc” for myelinated fibers and “cFiberBuilder.hoc” for unmyelinated fibers.
For all fiber types, the segments created and connected in NEURON have lengths that correspond to the coordinates of
the input potentials.

34.2 Intracellular stimulus

For simulations of block threshold, an intracellular test pulse is delivered at one end of the fiber to test if the cuff
electrode (i.e., placed between the intracellular stimulus and the site of detecting action potentials) is blocking action
potentials (S22 Text). The intracellular stimulation parameters are defined in Sim and are defined as parameters in
NEURON within the launch.hoc file. The parameters in Sim control the pulse delay, pulse width, pulse repetition
frequency, pulse amplitude, and node/section index of the intracellular stimulus (S8 Text). For simulating activation
thresholds, the intracellular stimulation amplitude should be set to zero.

34.3 Extracellular stimulus

To simulate response of individual fibers to electrical stimulation, we use NEURON’s extracellular mechanisms to
apply the electric potential from COMSOL at each segment of the cable model as a time-varying signal. We load
in the stimulation waveform from a n_sim’s data/inputs/ directory using the VeTime_read() procedure within
ExtracellularStim_Time.hoc. The saved stimulation waveform is unscaled, meaning the maximum current mag-
nitude at any timestep is +/-1. Analogously, we read in the potentials for the fiber being simulated from data/inputs/
using the VeSpace_read() procedure within ExtracellularStim_Space.hoc.

137

ASCENT, Release v1.1.2

34.4 Recording

The NEURON simulation code contains functionality ready to record and save to file the values of state variables at
discrete spatial locations for all times and/or at discrete times for all spatial locations (i.e., nodes of Ranvier for myeli-
nated fibers or sections for unmyelinated fibers) for applied extracellular potential, intracellular stimulation amplitude,
transmembrane potential, and gating parameters using Recording.hoc. The recording tools are particularly useful
for generating data to troubleshoot and visualize simulations.

34.5 RunSim

Our procedure RunSim is responsible for simulating the response of the model fiber to intracellular and extracellular
stimulation. Before the simulation starts, the procedure adds action potential counters to look for a rise above a threshold
transmembrane potential.

So that each fiber reaches a steady-state before the simulation starts, the RunSim procedure initializes the fiber by
stepping through large time steps with no extracellular potential applied to each compartment. RunSim then loops over
each time step, and, while updating the value of extracellular potential at each fiber segment, records the values of
flagged state variables as necessary.

At the end of RunSim’s loop over all time steps, if the user is searching for threshold current amplitudes, the method
evaluates if the extracellular stimulation amplitude was above or below threshold, as indicated by the presence or
absence of an action potential for activation and block thresholds, respectively.

34.6 FindThresh

The procedure FindThresh performs a binary search for activation and block thresholds (S22 Text).

34.7 Save outputs to file

At the end of the NEURON simulation, the program saves state variables as indicated with saveflags, CPU time, and
threshold values. Output files are saved to the data/outputs/ directory within its n_sim folder.

138 Chapter 34. NEURON Wrapper.hoc

CHAPTER

THIRTYFIVE

DATA ANALYSIS TOOLS

35.1 Python Query class

The general usage of Query is as follows:

1. In the context of a Python script, the user specifies the search criteria (think of these as “keywords” that filter
your data) in the form of a JSON configuration file (see query_criteria.json in S8 Text).

2. These search criteria are used to construct a Query object, and the search for matching Sample, Model, and Sim
configurations is performed using the method run().

3. The search results are in the form of a hierarchy of Sample, Model, and Sim indices, which can be accessed using
the summary() method.

Using this “summary” of results, the user is then able to use various convenience methods provided by the Query
class to build paths to arbitrary points in the data file structure as well as load saved Python objects (e.g., Sample and
Simulation class instances).

The Query class’s initializer takes one argument: a dictionary in the appropriate structure for query criteria (S8 Text)
or a string value containing the path (relative to the pipeline repository root) to the desired JSON configuration with
the criteria. Put concisely, a user may filter results either manually by using known indices or automatically by us-
ing parameters as they would be found in the main configuration files. It is extremely important to note that the
Query class must be initialized with the working directory set to the root of the pipeline repository (i.e., sys.path.
append(ASCENT_PROJECT_PATH) in your script). Failure to set the working directory correctly will break the initial-
ization step of the Query class.

After initialization, the search can be performed by calling Query’s run() method. This method recursively dives
into the data file structure of the pipeline searching for configurations (i.e., Sample, Model, and/or Sim) that satisfy
query_criteria.json. Once run() has been called, the results can be fetched using the summary() accessor
method. In addition, the user may pass in a file path to excel_output() to generate an Excel sheet summarizing the
Query results.

Query also has methods for accessing configurations and Python objects within the samples/ directory based on a list
of Sample, Model, or Sim indices. The build_path() method returns the path of the configuration or object for the
provided indices. Similarly, the get_config() and get_object() methods return the configuration dictionary or
saved Python object (using the Pickle package), respectively, for a list of configuration indices. These tools allow for
convenient looping through the data associated with search criteria.

In addition, we have included a few data analysis methods in the Query class: heatmaps(),
barcharts_compare_models(), and barcharts_compare_samples(). Since individual use cases for data
analysis can differ greatly, these methods are not considered “core” functionality and can instead be treated as
examples for how one might use the Query class. Example uses of these Query convenience methods are included in
examples/analysis/.

• plot_sample.py

139

ASCENT, Release v1.1.2

• plot_fiberset.py

• plot_waveform.py

35.2 Video generation for NEURON state variables

In examples/analysis/ we provide a script, plot_video.py, that creates an animation of saved state variables as
a function of space and time (e.g., transmembrane potentials, MRG gating parameters). The user can plot n_sim data
saved in a data/output/ folder by referencing indices for Sample, Model, Sim, inner, fiber, and n_sim. The user
may save the animation as either a *.mp4 or *.gif file to the data/output/ folder.

The plot_video.py script is useful for determining necessary simulation durations (e.g., the time required for an
action potential to propagate the length of the fiber) to avoid running unnecessarily long simulations. Furthermore,
the script is useful for observing onset response to kilohertz frequency block, which is important for determining the
appropriate duration of time to allow for the fiber onset response to complete.

Users need to determine an appropriate number of points along the fiber to record state variables. Users have the
option to either record state variables at all Nodes of Ranvier (myelinated fibers) or sections (unmyelinated fibers), or
at discrete locations along the length of the fiber (S8 Text).

140 Chapter 35. Data analysis tools

CHAPTER

THIRTYSIX

CONVERGENCE ANALYSIS EXAMPLE

36.1 Convergence analysis example

*Note: The following convergence analysis was performed for a rat cervical vagus nerve and is provided as an illustra-
tive example.

The outer boundaries of the model (assigned to electrical ground) were initially set to dimensions that are known to
be excessively large in both length (100 mm) and radius (20 mm) (Figure A). For testing of convergence of the model
length and diameter, we carefully controlled the mesh parameters such that any changes in the threshold to excite model
nerve fibers positioned in the finite element model are attributed to changes in model dimensions and not to a change in
mesh density. First, we used an excessive number of domain mesh elements. Second, to maintain consistent meshing in
the area of interest despite a change in geometry of the outer boundary of the model, the proximal region of the model
surrounding the nerve and electrode (i.e., “proximal”, which is the full length of the nerve) was assigned its own mesh
entirely independent from the outer boundary region (i.e., “distal”).

Figure A. Convergence of FEM model dimensions and mesh density for 2 and 10 m myelinated MRG fibers modeled
in a rat cervical vagus nerve.

For different model sizes and mesh densities, we determined excitation thresholds for 100 randomly placed 2 µm
diameter myelinated model axons in the nerve. First, with the radius of the model held constant at 20 mm, we halved
the length of the model until there was a change in threshold of greater than 2% compared to the 100 mm-long model.
The resulting length of the model was chosen to be 6.25 mm, as the next shortest length (3.125 mm) had at least one

141

ASCENT, Release v1.1.2

fiber with a threshold change of 15%, which was above our tolerance of 2%. Second, with the length of the model
held constant at 6.25 mm, the radius of the model was halved until there was a change in threshold of greater than 2%
compared to the 20 mm-radius model. The resulting radius of the model was chosen to be 1.25 mm. The radius of
the model could not be reduced further without interfering with the electrode geometry. We then reduced the number
of mesh elements until there was a 2% change in thresholds for activation of model nerve fibers. Meshing parameters
that resulted in ~273,000 domain elements for the 1.25 mm radius and 6.25 mm length model were chosen for further
studies.

Lastly, the length was again converged with 10 µm diameter myelinated model axons using the previously found model
radius and mesh density to ensure that the model length incorporated enough nodes of Ranvier for convergence of
threshold for all native fiber diameters. A conservative estimate for the largest myelinated fiber diameter found in the
cervical level of a rat vagus nerve is 10 µm [1]. The largest diameter nerve fiber native to this region is of interest in
our convergence studies because it will have the fewest number of nodes per unit length (based on INL=100*D). We
found that the FEM length needed to be longer for 10 µm diameter myelinated fibers (12.5 mm) than 2 µm diameter
myelinated fibers (6.25 mm).

36.2 References

1. Licursi de Alcântara AC, Salgado HC, Sassoli Fazan VP. Morphology and morphometry of the vagus nerve in
male and female spontaneously hypertensive rats. Brain Res. 2008 Mar;1197:170–80. Available from: https:
//doi.org/10.1016/j.brainres.2007.12.045

142 Chapter 36. Convergence analysis example

https://doi.org/10.1016/j.brainres.2007.12.045
https://doi.org/10.1016/j.brainres.2007.12.045

CHAPTER

THIRTYSEVEN

SIM4LIFE VALIDATION

We designed test simulations to verify ASCENT’s activation thresholds. The verifications were performed by The
Foundation for Research Technologies in Society (IT’IS) with the Sim4Life (Zurich, Switzerland) simulation platform.
Running the following simulations required modification of the Sim4Life solver to implement the required electrical
anisotropy of tissue conductivities and the boundary condition to represent the thin layer approximation used to model
the perineurium.

37.1 Monofascicular rat nerve model

We validated activation thresholds for fibers seeded in a model of a rat cervical vagus nerve instrumented with a bipolar
cuff electrode (Figure A and B).

Figure A. Raw histology image (r.tif), segmented histology (i.tif), and scalebar (s.tif) of a rat cervical vagus nerve
sample that served as inputs to define the cross section of the nerve in the FEM.

143

https://zmt.swiss/sim4life/

ASCENT, Release v1.1.2

Figure B. FEM of a rat cervical vagus nerve sample instrumented with a bipolar cuff electrode.

The conductivity values applied to the rat cervical FEM are provided in Table A, and the boundary conditions applied
are provided in Table B.

Table A. Conductivity values for FEM of rat cervical vagus nerve. These values were also used in multifascicular nerve
model and human model verifications.

Table B. Boundary conditions used in FEM of rat cervical vagus nerve, multifascicular dummy nerve, and human
cervical vagus nerve.

We compared thresholds for 100 5.7 µm myelinated axons (MRG model) seeded in the cross section of the nerve in
response to a single 100 µs duration monophasic rectangular pulse. The differences in thresholds between ASCENT
and IT’IS model implementations was <4.2% for all fibers, demonstrating strong agreement (Figure C).

Figure C. Comparison of activation thresholds for the rat cervical vagus nerve implementation in ASCENT and
Sim4Life.

144 Chapter 37. Sim4Life validation

ASCENT, Release v1.1.2

37.2 Multifascicular dummy nerve model

We validated activation thresholds for fibers seeded in a multifascicular dummy nerve instrumented with a bipolar cuff
electrode (Figure D and E). The segmented histology was created using our mock_morphology_generator.py script
(S12 Text).

Figure D. Mock morphology inputs to the define tissue boundaries for a multifascicular dummy nerve for validation
with Sim4Life. Scale bar is 100 µm long. The nerve is a perfect circle (diameter = 250 µm, centered at (x,y)=(0,0)
µm). The inners are also perfect circles: (1) diameter = 50 µm, centered at (x,y)=(40,50) µm, (2) diameter = 60 µm,
centered at (x,y)=(-50,0) µm, and (3) diameter = 80 µm, centered at (x,y)=(20,-60) µm.

Figure E. FEM of a multifascicular nerve sample instrumented with a bipolar cuff electrode.

The conductivity values applied to multifascicular nerve sample finite element model are provided in Table A, and the
boundary conditions applied are provided in Table B.

We seeded a single 5.7 µm diameter fiber in the center of each fascicle. Between the ASCENT and IT’IS implementa-
tions, there was less than a 3% difference in threshold to a single 100 µs duration monophasic rectangular pulse.

37.2. Multifascicular dummy nerve model 145

ASCENT, Release v1.1.2

37.3 Multifascicular human nerve model

We validated activation thresholds for fibers seeded in a multifascicular human cervical vagus nerve instrumented with
a LivaNova bipolar cuff electrode (Figure F and G). The segmented histology was created using Nikon NIS-Elements.

Figure F. Raw histology image (r.tif), segmented inners (i.tif), segmented nerve (n.tif), and scale bar (s.tif) of a human
cervical vagus nerve sample that served as inputs to define the cross section of the nerve in the FEM for validation with
Sim4Life.

Figure G. FEM of a human cervical vagus nerve sample instrumented with a LivaNova cuff electrode.

The conductivity values applied to the human cervical vagus nerve sample finite element model are provided in Table
A, and the boundary conditions applied are provided in Table B.

We seeded 5.7 µm diameter fibers in each fascicle. Between the ASCENT and IT’IS implementations, there was less
than 2.5% difference to a single 100 µs duration monophasic rectangular pulse.

146 Chapter 37. Sim4Life validation

CHAPTER

THIRTYEIGHT

COMPARISON OF MRG FIT TO BUCKSOT 2019

38.1 Comparison of MRG fit to Bucksot et al. 2019

Figure A. Our piecewise polynomial fits to published MRG fiber parameters compared to the Bucksot et al. 2019’s
interpolation [1]. Single quadratic fits were used for all parameters except for internode length, which has a linear fit
below 5.643 µm (using MRG data at 2 and 5.7 µm) and a single quadratic fit at diameters greater than or equal to 5.643
µm (using MRG data >= 5.7 µm); 5.643 µm is the fiber diameter at which the linear and quadratic fits intersected. The
fiber diameter is the diameter of the myelin. “Paranode 1” is the MYSA section, “paranode 2” is the FLUT section, and
“internode” is the STIN section. The axon diameter is the same for the node of Ranvier and MYSA (“node diameter”),
as well as for the FLUT and STIN (“axon diameter”). The node and MYSA lengths are fixed at 1 and 3 m, respectively,
for all fiber diameters.

147

ASCENT, Release v1.1.2

38.2 References

1. Bucksot JE, Wells AJ, Rahebi KC, Sivaji V, Romero-Ortega M, Kilgard MP, et al. Flat electrode contacts for
vagus nerve stimulation. PLoS One [Internet]. 2019;14(11):1–22. Available from: https://doi.org/10.1371/
journal.pone.0215191

148 Chapter 38. Comparison of MRG fit to Bucksot 2019

https://doi.org/10.1371/journal.pone.0215191
https://doi.org/10.1371/journal.pone.0215191

CHAPTER

THIRTYNINE

ASCENT TROUBLESHOOTING GUIDE

39.1 General Troubleshooting Steps

• Check your geometry (ascent/samples/sample_index/models/model_index/debug_geom.mph)

• Check your sample (ascent/samples/sample_index/slides/cassette_index/slide_index/masks)

39.2 Installation Issues

• NEURON

– issue: Sometimes NEURON installation will complete but NEURON will not be installed

– solution: Run the installer in Windows 8 compatibility mode

39.3 Pipeline Issues

• Sample

– issue: Small white pixel islands cause the pipeline to fail, or the pipeline does not fail but very small
elements are present as fascicles that reflect segmentation errors

– solution: increase value of image_preprocessing>object_removal_area in sample.json

• Model

– issue: fascicle borders appear ragged/wavy in model geometry

– solutions:

∗ Increase inner_interp_tol and/or outer_interp_tol in sample.json (depending on whether the issue
exists for outers or inners)

∗ If your mask is very pixelated, increase smoothing>fascicle distance in sample.json

149

ASCENT, Release v1.1.2

39.4 NEURON Issues

Issue: Compiling NEURON files with python submit.py results in an error, mpicc: command not found Solu-
tion: Install open-mpi 2.0 and add to path

39.5 Python Issues

• issue: python output prints out of order with java output

• solution: pass the -u flag (i.e. python -u run pipeline), which turns off output buffering

150 Chapter 39. ASCENT Troubleshooting Guide

CHAPTER

FORTY

PAPER REFERENCES

1. Handforth A, DeGiorgio CM, Schachter SC, Uthman BM, Naritoku DK, Tecoma ES, et al. Vagus nerve stimu-
lation therapy for partial-onset seizures: a randomized active-control trial. Neurology. 1998 Jul;51(1):48–55.

2. Ben-Menachem E, Manon-Espaillat R, Ristanovic R, Wilder BJ, Stefan H, Mirza W, et al. Vagus nerve stimula-
tion for treatment of partial seizures: 1. A controlled study of effect on seizures. First International Vagus Nerve
Stimulation Study Group. Epilepsia. 1994;35(3):616–26.

3. A randomized controlled trial of chronic vagus nerve stimulation for treatment of medically intractable seizures.
The Vagus Nerve Stimulation Study Group. Neurology. 1995 Feb;45(2):224–30.

4. Marangell LB, Rush AJ, George MS, Sackeim HA, Johnson CR, Husain MM, et al. Vagus nerve stimulation
(VNS) for major depressive episodes: one year outcomes. Biol Psychiatry [Internet]. 2002 Feb 15;51(4):280–7.
Available from: https://doi.org/10.1016/S0006-3223(01)01343-9

5. Nierenberg AA, Alpert JE, Gardner-Schuster EE, Seay S, Mischoulon D. Vagus Nerve Stimulation: 2-Year
Outcomes for Bipolar Versus Unipolar Treatment-Resistant Depression. Biol Psychiatry [Internet]. 2008 Sep
15;64(6):455–60. Available from: https://doi.org/10.1016/j.biopsych.2008.04.036

6. Rush AJ, George MS, Sackeim HA, Marangell LB, Husain MM, Giller C, et al. Vagus nerve stimulation (VNS)
for treatment-resistant depressions: a multicenter study. Biol Psychiatry. 2000 Feb;47(4):276–86.

7. Birmingham K, Gradinaru V, Anikeeva P, Grill WM, Pikov V, McLaughlin B, et al. Bioelectronic
medicines: a research roadmap. Nat Rev Drug Discov [Internet]. 2014;13(6):399–400. Available from:
https://doi.org/10.1038/nrd4351

8. Johnson RL, Wilson CG. A review of vagus nerve stimulation as a therapeutic intervention. J Inflamm Res
[Internet]. 2018 May 16;11:203–13. Available from: https://pubmed.ncbi.nlm.nih.gov/29844694

9. Lubba CH, Le Guen Y, Jarvis S, Jones NS, Cork SC, Eftekhar A, et al. PyPNS: Multiscale Simula-
tion of a Peripheral Nerve in Python. Neuroinformatics [Internet]. 2019;17(1):63–81. Available from:
https://doi.org/10.1007/s12021-018-9383-z

10. Pelot NA, Behrend CE, Grill WM. Modeling the response of small myelinated axons in a compound nerve to
kilohertz frequency signals. J Neural Eng. 2017 Aug;14(4):46022.

11. Bucksot JE, Wells AJ, Rahebi KC, Sivaji V, Romero-Ortega M, Kilgard MP, et al. Flat electrode
contacts for vagus nerve stimulation. PLoS One [Internet]. 2019;14(11):1–22. Available from:
https://doi.org/10.1371/journal.pone.0215191

12. Helmers SL, Begnaud J, Cowley A, Corwin HM, Edwards JC, Holder DL, et al. Application of a computa-
tional model of vagus nerve stimulation. Acta Neurol Scand [Internet]. 2012;126(5):336–43. Available from:
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1600-0404.2012.01656.x

13. Zelechowski M, Valle G, Raspopovic S. A computational model to design neural interfaces for lower-limb sensory
neuroprostheses. J Neuroeng Rehabil. 2020 Feb;17(1):24.

151

ASCENT, Release v1.1.2

14. Romeni S, Valle G, Mazzoni A, Micera S. Tutorial: a computational framework for the design and op-
timization of peripheral neural interfaces. Nat Protoc [Internet]. 2020;15(10):3129–53. Available from:
https://doi.org/10.1038/s41596-020-0377-6

15. Wilkinson MD, Dumontier M, Aalbersberg IJJ, Appleton G, Axton M, Baak A, et al. The FAIR Guiding Prin-
ciples for scientific data management and stewardship. Sci data. 2016 Mar;3:160018.

16. Bossetti CA, Birdno MJ, Grill WM. Analysis of the quasi-static approximation for calculating potentials gener-
ated by neural stimulation. J Neural Eng. 2008 Mar;5(1):44–53.

17. McNeal DR. Analysis of a Model for Excitation of Myelinated Nerve. IEEE Trans Biomed Eng. 1976;BME-
23(4):329–37.

18. Van Rossum G, Drake FL. Python 3 Reference Manual. Scotts Valley, CA: CreateSpace; 2009.

19. Arnold K, Gosling J, Holmes D. Java(TM) Programming Language, The (4th Edition). Addison-Wesley Profes-
sional; 2005.

20. Hines ML, Carnevale NT. The NEURON simulation environment. Neural Comput. 1997 Aug;9(6):1179–209.

21. Pelot NA, Goldhagen GB, Cariello JE, Musselman ED, Clissold KA, Ezzell JA, et al. Quantified Morphol-
ogy of the Cervical and Subdiaphragmatic Vagus Nerves of Human, Pig, and Rat. Front Neurosci [Internet].
2020;14:1148. Available from: https://www.frontiersin.org/article/10.3389/fnins.2020.601479

22. Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy T, Cournapeau D, et al. SciPy 1.0: fundamental
algorithms for scientific computing in Python. Nat Methods [Internet]. 2020;17(3):261–72. Available from:
https://doi.org/10.1038/s41592-019-0686-2

23. Oliphant TE. A Guide to NumPy [Internet]. Trelgol Publishing; 2006. Available from:
https://books.google.com/books?id=fKulSgAACAAJ

24. Callister WD, Rethwisch DG. Fundamentals of Material Scienec and Engineering An Integrated Approach. In:
Fundamentals Of Material Scienec and Engineering An Intergrated Approach. 2012.

25. de Podesta M, Laboratory NP, UK. Understanding the Properties of Matter. Understanding the Properties of
Matter. 1996.

26. Ranck JB, BeMent SL. The specific impedance of the dorsal columns of cat: An anisotropic
medium. Exp Neurol [Internet]. 1965 Apr 1 [cited 2020 Apr 20];11(4):451–63. Available from:
https://www.sciencedirect.com/science/article/abs/pii/0014488665900592

27. Pelot NA, Behrend CE, Grill WM. On the parameters used in finite element modeling of compound periph-
eral nerves. J Neural Eng [Internet]. 2019;16(1):16007. Available from: http://dx.doi.org/10.1088/1741-
2552/aaeb0c

28. Grill WM, Mortimer TJ. Electrical properties of implant encapsulation tissue. Ann Biomed Eng [Internet].
1994;22(1):23–33. Available from: https://doi.org/10.1007/BF02368219

29. Gielen FLH, Wallinga-de Jonge W, Boon KL. Electrical conductivity of skeletal muscle tissue: Experimental
results from different musclesin vivo. Med Biol Eng Comput [Internet]. 1984;22(6):569–77. Available from:
https://doi.org/10.1007/BF02443872

30. Geddes LA, Baker LE. The specific resistance of biological material—A compendium of data for the
biomedical engineer and physiologist. Med Biol Eng [Internet]. 1967;5(3):271–93. Available from:
https://doi.org/10.1007/BF02474537

31. Horch K. Neuroprosthetics: Theory and practice: Second edition. Neuroprosthetics: Theory and Practice: Sec-
ond Edition. 2017. 1–925 p.

32. Pelot NA, Thio BJ, Grill WM. Modeling Current Sources for Neural Stimula-
tion in COMSOL. Front Comput Neurosci [Internet]. 2018;12:40. Available from:
https://www.frontiersin.org/article/10.3389/fncom.2018.00040

152 Chapter 40. Paper References

ASCENT, Release v1.1.2

33. McIntyre CC, Grill WM, Sherman DL, Thakor N V. Cellular effects of deep brain stimulation: model-based
analysis of activation and inhibition. J Neurophysiol. 2004 Apr;91(4):1457–69.

34. McIntyre CC, Richardson AG, Grill WM. Modeling the excitability of mammalian nerve fibers: influence of
afterpotentials on the recovery cycle. J Neurophysiol. 2002 Feb;87(2):995–1006.

35. Sundt D, Gamper N, Jaffe DB. Spike propagation through the dorsal root ganglia in an unmyelinated sensory
neuron: a modeling study. J Neurophysiol. 2015 Dec;114(6):3140–53.

36. Tigerholm J, Petersson ME, Obreja O, Lampert A, Carr R, Schmelz M, et al. Modeling activity-
dependent changes of axonal spike conduction in primary afferent C-nociceptors. J Neurophysiol. 2014
May;111(9):1721–35.

37. Rattay F, Aberham M. Modeling axon membranes for functional electrical stimulation. IEEE Trans Biomed Eng.
1993 Dec;40(12):1201–9.

38. Howell B, Grill WM. Evaluation of high-perimeter electrode designs for deep brain stimulation. J Neural Eng
[Internet]. 2014/07/16. 2014 Aug;11(4):46026. Available from: https://pubmed.ncbi.nlm.nih.gov/25029124

39. Arle JE, Carlson KW, Mei L. Investigation of mechanisms of vagus nerve stimulation for seizure
using finite element modeling. Epilepsy Res [Internet]. 2016;126:109–18. Available from:
http://www.sciencedirect.com/science/article/pii/S0920121116301188

40. Yoo PB, Lubock NB, Hincapie JG, Ruble SB, Hamann JJ, Grill WM. High-resolution measurement of
electrically-evoked vagus nerve activity in the anesthetized dog. J Neural Eng. 2013 Apr;10(2):26003.

41. Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat Methods
[Internet]. 2012;9(7):671–5. Available from: https://doi.org/10.1038/nmeth.2089

42. Newman J. Current Distribution on a Rotating Disk below the Limiting Current. J Electrochem Soc.
1966;113:1235–1241.

43. Cantrell DR, Inayat S, Taflove A, Ruoff RS, Troy JB. Incorporation of the electrode–electrolyte interface into
finite-element models of metal microelectrodes. J Neural Eng [Internet]. 2007 Dec;5(1):54–67. Available from:
https://doi.org/10.1088%2F1741-2560%2F5%2F1%2F006

44. Wilson G, Aruliah DA, Brown CT, Chue Hong NP, Davis M, Guy RT, et al. Best Practices for Scientific Com-
puting. PLOS Biol [Internet]. 2014;12(1):1–7. Available from: https://doi.org/10.1371/journal.pbio.1001745

45. Wilson G, Bryan J, Cranston K, Kitzes J, Nederbragt L, Teal TK. Good enough practices in scientific computing.
PLoS Comput Biol. 2017 Jun;13(6):e1005510.

153

	Metadata required to model an in vivo experiment using the ASCENT pipeline
	Installation
	Installing commercial software dependencies
	Installing ASCENT
	References

	ASCENT data hierarchy
	Batching and sweeping of parameters

	Your first run
	Task given to beta testers

	Helper Scripts
	scripts/import_n_sims.py
	scripts/clean_samples.py
	scripts/tidy_samples.py

	Command-Line Arguments
	run
	Positional Arguments
	Named Arguments
	Sub-commands:
	pipeline
	Positional Arguments
	Named Arguments

	install
	Named Arguments

	env_setup
	clean_samples
	Positional Arguments

	import_n_sims
	Positional Arguments
	Named Arguments

	mock_morphology_generator
	Positional Arguments

	tidy_samples
	Positional Arguments

	submit.py
	Positional Arguments
	Named Arguments

	Template for methods reporting
	Configuration files
	Nerve segmentation files
	Cuff
	Materials
	Domains
	Perineurium
	Mesh
	Solution
	HOC/MOD files
	Waveform
	NEURON simulations
	Analysis
	References

	Enums
	JSON configuration files
	User configuration files
	run.json
	sample.json
	mock_sample.json
	model.json
	sim.json
	query_criteria.json

	config/system/
	env.json
	exceptions.json
	materials.json
	fiber_z.json
	ci_perineurium_thickness.json
	mesh_dependent_model.json

	References

	JSON file parameter guide
	run.json
	sample.json
	mock_sample.json
	model.json
	sim.json
	query_criteria.json
	env.json
	exceptions.json
	materials.json
	ci_peri_thickness.json
	mesh_dependent_model.json
	References

	Python utility classes
	Configurable
	"SetupMode" (from Enums, S6 Text)
	ConfigKey (from Enums, S6 Text)
	Config:
	Example use of Configurable:

	Exceptionable
	Saveable

	Submitting NEURON jobs
	Cluster submissions

	Morphology Files
	Python MockSample class for creating binary masks of nerve morphology
	Python classes for representing nerve morphology (Sample)
	Trace
	Nerve
	Fascicle
	Slide
	Map
	Sample
	Deformable
	References

	Creating sample specific nerve morphologies in COMSOL
	ModelWrapper.addNerve()
	Part.createNervePartInstance()
	Fascicles
	Epineurium

	Micro Leads cuff measurements
	Library of part primitives for electrode contacts and cuffs
	Creating custom preset cuffs from instances of part primitives
	Creating new part primitives
	Cuff placement on nerve
	Fiberset
	Implementation of NEURON fiber models
	Myelinated fiber models
	MRG discrete diameter (as previously published)
	MRG interpolated diameters

	Unmyelinated Fiber Models
	References

	Simulation Protocols
	Binary search
	Activation threshold protocol
	Block threshold protocol
	Response to set amplitudes
	References

	ModelWrapper Class
	ModelWrapper
	References

	Making geometries in COMSOL (Part class)
	Part.createEnvironmentPartPrimitive()
	Part.createCuffPartPrimitive()
	Part Instances
	Part.createEnvironmentPartInstance()
	Part.createCuffPartInstance()

	Control of medium surrounding nerve and cuff electrode
	Java utility classes
	IdentifierManager
	JSONio
	ModelSearcher

	Defining and assigning materials in COMSOL
	ModelWrapper.addMaterialDefinitions()
	Part.defineMaterial()
	ModelWrapper.addCuffPartMaterialAssignment()
	ModelWrapper.addCuffPartMaterialAssignments()
	Adding and assigning default material properties
	References

	Definition of perineurium
	Definition of perineurium
	References

	Data interchange between COMSOL and NEURON
	Python simulation class
	(Pre-Java)
	(Post-Java)

	NEURON launch.hoc
	NEURON Wrapper.hoc
	Create fiber model
	Intracellular stimulus
	Extracellular stimulus
	Recording
	RunSim
	FindThresh
	Save outputs to file

	Data analysis tools
	Python Query class
	Video generation for NEURON state variables

	Convergence analysis example
	Convergence analysis example
	References

	Sim4Life validation
	Monofascicular rat nerve model
	Multifascicular dummy nerve model
	Multifascicular human nerve model

	Comparison of MRG fit to Bucksot 2019
	Comparison of MRG fit to Bucksot et al. 2019
	References

	ASCENT Troubleshooting Guide
	General Troubleshooting Steps
	Installation Issues
	Pipeline Issues
	NEURON Issues
	Python Issues

	Paper References

