Paper References

  1. Handforth A, DeGiorgio CM, Schachter SC, Uthman BM, Naritoku DK, Tecoma ES, et al. Vagus nerve stimulation therapy for partial-onset seizures: a randomized active-control trial. Neurology. 1998 Jul;51(1):48–55.

  2. Ben-Menachem E, Manon-Espaillat R, Ristanovic R, Wilder BJ, Stefan H, Mirza W, et al. Vagus nerve stimulation for treatment of partial seizures: 1. A controlled study of effect on seizures. First International Vagus Nerve Stimulation Study Group. Epilepsia. 1994;35(3):616–26.

  3. A randomized controlled trial of chronic vagus nerve stimulation for treatment of medically intractable seizures. The Vagus Nerve Stimulation Study Group. Neurology. 1995 Feb;45(2):224–30.

  4. Marangell LB, Rush AJ, George MS, Sackeim HA, Johnson CR, Husain MM, et al. Vagus nerve stimulation (VNS) for major depressive episodes: one year outcomes. Biol Psychiatry [Internet]. 2002 Feb 15;51(4):280–7. Available from: https://doi.org/10.1016/S0006-3223(01)01343-9

  5. Nierenberg AA, Alpert JE, Gardner-Schuster EE, Seay S, Mischoulon D. Vagus Nerve Stimulation: 2-Year Outcomes for Bipolar Versus Unipolar Treatment-Resistant Depression. Biol Psychiatry [Internet]. 2008 Sep 15;64(6):455–60. Available from: https://doi.org/10.1016/j.biopsych.2008.04.036

  6. Rush AJ, George MS, Sackeim HA, Marangell LB, Husain MM, Giller C, et al. Vagus nerve stimulation (VNS) for treatment-resistant depressions: a multicenter study. Biol Psychiatry. 2000 Feb;47(4):276–86.

  7. Birmingham K, Gradinaru V, Anikeeva P, Grill WM, Pikov V, McLaughlin B, et al. Bioelectronic medicines: a research roadmap. Nat Rev Drug Discov [Internet]. 2014;13(6):399–400. Available from: https://doi.org/10.1038/nrd4351

  8. Johnson RL, Wilson CG. A review of vagus nerve stimulation as a therapeutic intervention. J Inflamm Res [Internet]. 2018 May 16;11:203–13. Available from: https://pubmed.ncbi.nlm.nih.gov/29844694

  9. Lubba CH, Le Guen Y, Jarvis S, Jones NS, Cork SC, Eftekhar A, et al. PyPNS: Multiscale Simulation of a Peripheral Nerve in Python. Neuroinformatics [Internet]. 2019;17(1):63–81. Available from: https://doi.org/10.1007/s12021-018-9383-z

  10. Pelot NA, Behrend CE, Grill WM. Modeling the response of small myelinated axons in a compound nerve to kilohertz frequency signals. J Neural Eng. 2017 Aug;14(4):46022.

  11. Bucksot JE, Wells AJ, Rahebi KC, Sivaji V, Romero-Ortega M, Kilgard MP, et al. Flat electrode contacts for vagus nerve stimulation. PLoS One [Internet]. 2019;14(11):1–22. Available from: https://doi.org/10.1371/journal.pone.0215191

  12. Helmers SL, Begnaud J, Cowley A, Corwin HM, Edwards JC, Holder DL, et al. Application of a computational model of vagus nerve stimulation. Acta Neurol Scand [Internet]. 2012;126(5):336–43. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1600-0404.2012.01656.x

  13. Zelechowski M, Valle G, Raspopovic S. A computational model to design neural interfaces for lower-limb sensory neuroprostheses. J Neuroeng Rehabil. 2020 Feb;17(1):24.

  14. Romeni S, Valle G, Mazzoni A, Micera S. Tutorial: a computational framework for the design and optimization of peripheral neural interfaces. Nat Protoc [Internet]. 2020;15(10):3129–53. Available from: https://doi.org/10.1038/s41596-020-0377-6

  15. Wilkinson MD, Dumontier M, Aalbersberg IJJ, Appleton G, Axton M, Baak A, et al. The FAIR Guiding Principles for scientific data management and stewardship. Sci data. 2016 Mar;3:160018.

  16. Bossetti CA, Birdno MJ, Grill WM. Analysis of the quasi-static approximation for calculating potentials generated by neural stimulation. J Neural Eng. 2008 Mar;5(1):44–53.

  17. McNeal DR. Analysis of a Model for Excitation of Myelinated Nerve. IEEE Trans Biomed Eng. 1976;BME-23(4):329–37.

  18. Van Rossum G, Drake FL. Python 3 Reference Manual. Scotts Valley, CA: CreateSpace; 2009.

  19. Arnold K, Gosling J, Holmes D. Java(TM) Programming Language, The (4th Edition). Addison-Wesley Professional; 2005.

  20. Hines ML, Carnevale NT. The NEURON simulation environment. Neural Comput. 1997 Aug;9(6):1179–209.

  21. Pelot NA, Goldhagen GB, Cariello JE, Musselman ED, Clissold KA, Ezzell JA, et al. Quantified Morphology of the Cervical and Subdiaphragmatic Vagus Nerves of Human, Pig, and Rat. Front Neurosci [Internet]. 2020;14:1148. Available from: https://www.frontiersin.org/article/10.3389/fnins.2020.601479

  22. Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy T, Cournapeau D, et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat Methods [Internet]. 2020;17(3):261–72. Available from: https://doi.org/10.1038/s41592-019-0686-2

  23. Oliphant TE. A Guide to NumPy [Internet]. Trelgol Publishing; 2006. Available from: https://books.google.com/books?id=fKulSgAACAAJ

  24. Callister WD, Rethwisch DG. Fundamentals of Material Scienec and Engineering An Integrated Approach. In: Fundamentals Of Material Scienec and Engineering An Intergrated Approach. 2012.

  25. de Podesta M, Laboratory NP, UK. Understanding the Properties of Matter. Understanding the Properties of Matter. 1996.

  26. Ranck JB, BeMent SL. The specific impedance of the dorsal columns of cat: An anisotropic medium. Exp Neurol [Internet]. 1965 Apr 1 [cited 2020 Apr 20];11(4):451–63. Available from: https://www.sciencedirect.com/science/article/abs/pii/0014488665900592

  27. Pelot NA, Behrend CE, Grill WM. On the parameters used in finite element modeling of compound peripheral nerves. J Neural Eng [Internet]. 2019;16(1):16007. Available from: http://dx.doi.org/10.1088/1741-2552/aaeb0c

  28. Grill WM, Mortimer TJ. Electrical properties of implant encapsulation tissue. Ann Biomed Eng [Internet]. 1994;22(1):23–33. Available from: https://doi.org/10.1007/BF02368219

  29. Gielen FLH, Wallinga-de Jonge W, Boon KL. Electrical conductivity of skeletal muscle tissue: Experimental results from different musclesin vivo. Med Biol Eng Comput [Internet]. 1984;22(6):569–77. Available from: https://doi.org/10.1007/BF02443872

  30. Geddes LA, Baker LE. The specific resistance of biological material—A compendium of data for the biomedical engineer and physiologist. Med Biol Eng [Internet]. 1967;5(3):271–93. Available from: https://doi.org/10.1007/BF02474537

  31. Horch K. Neuroprosthetics: Theory and practice: Second edition. Neuroprosthetics: Theory and Practice: Second Edition. 2017. 1–925 p.

  32. Pelot NA, Thio BJ, Grill WM. Modeling Current Sources for Neural Stimulation in COMSOL. Front Comput Neurosci [Internet]. 2018;12:40. Available from: https://www.frontiersin.org/article/10.3389/fncom.2018.00040

  33. McIntyre CC, Grill WM, Sherman DL, Thakor N V. Cellular effects of deep brain stimulation: model-based analysis of activation and inhibition. J Neurophysiol. 2004 Apr;91(4):1457–69.

  34. McIntyre CC, Richardson AG, Grill WM. Modeling the excitability of mammalian nerve fibers: influence of afterpotentials on the recovery cycle. J Neurophysiol. 2002 Feb;87(2):995–1006.

  35. Sundt D, Gamper N, Jaffe DB. Spike propagation through the dorsal root ganglia in an unmyelinated sensory neuron: a modeling study. J Neurophysiol. 2015 Dec;114(6):3140–53.

  36. Tigerholm J, Petersson ME, Obreja O, Lampert A, Carr R, Schmelz M, et al. Modeling activity-dependent changes of axonal spike conduction in primary afferent C-nociceptors. J Neurophysiol. 2014 May;111(9):1721–35.

  37. Rattay F, Aberham M. Modeling axon membranes for functional electrical stimulation. IEEE Trans Biomed Eng. 1993 Dec;40(12):1201–9.

  38. Howell B, Grill WM. Evaluation of high-perimeter electrode designs for deep brain stimulation. J Neural Eng [Internet]. 2014/07/16. 2014 Aug;11(4):46026. Available from: https://pubmed.ncbi.nlm.nih.gov/25029124

  39. Arle JE, Carlson KW, Mei L. Investigation of mechanisms of vagus nerve stimulation for seizure using finite element modeling. Epilepsy Res [Internet]. 2016;126:109–18. Available from: http://www.sciencedirect.com/science/article/pii/S0920121116301188

  40. Yoo PB, Lubock NB, Hincapie JG, Ruble SB, Hamann JJ, Grill WM. High-resolution measurement of electrically-evoked vagus nerve activity in the anesthetized dog. J Neural Eng. 2013 Apr;10(2):26003.

  41. Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat Methods [Internet]. 2012;9(7):671–5. Available from: https://doi.org/10.1038/nmeth.2089

  42. Newman J. Current Distribution on a Rotating Disk below the Limiting Current. J Electrochem Soc. 1966;113:1235–1241.

  43. Cantrell DR, Inayat S, Taflove A, Ruoff RS, Troy JB. Incorporation of the electrode–electrolyte interface into finite-element models of metal microelectrodes. J Neural Eng [Internet]. 2007 Dec;5(1):54–67. Available from: https://doi.org/10.1088%2F1741-2560%2F5%2F1%2F006

  44. Wilson G, Aruliah DA, Brown CT, Chue Hong NP, Davis M, Guy RT, et al. Best Practices for Scientific Computing. PLOS Biol [Internet]. 2014;12(1):1–7. Available from: https://doi.org/10.1371/journal.pbio.1001745

  45. Wilson G, Bryan J, Cranston K, Kitzes J, Nederbragt L, Teal TK. Good enough practices in scientific computing. PLoS Comput Biol. 2017 Jun;13(6):e1005510.